Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a TiCT MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned TiCT-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH sensing ability. As a result, the 2D kirigami-shaped NH sensor exhibited a good response of 7% to 50 ppm of NH with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/HO/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c02558DOI Listing

Publication Analysis

Top Keywords

gas sensor
8
spray coating
8
hazardous gas
8
exhibited good
8
gas
5
fully transient
4
transient origami
4
origami paper-based
4
paper-based ammonia
4
ammonia gas
4

Similar Publications

Fluorescence-enhanced detection of sulfide ions through tuning the structure-activity relationship of gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:

The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.

View Article and Find Full Text PDF

Research on Fire Detection of Cotton Picker Based on Improved Algorithm.

Sensors (Basel)

January 2025

College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China.

According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model.

View Article and Find Full Text PDF

This study investigates the surface energies and work function changes in ZnGaO(111) surfaces with different atomic terminations using ab initio density functional theory. It explores the interactions of gas molecules such as NO, NO, and CHCOCH with Ga-terminated, O-terminated, and Ga-Zn-O-terminated surfaces. This study reveals previously unreported insights into how O-terminated surfaces exhibit enhanced reactivity with NO, resulting in significant work function changes of +6.

View Article and Find Full Text PDF

Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager.

Sensors (Basel)

January 2025

Department of Optical Engineering, Utsunomiya University, 7-2-1 Yoto, Utsunomiya 321-8585, Japan.

We describe the various steps of a gas imaging algorithm developed for detecting, identifying, and quantifying gas leaks using data from a snapshot infrared spectral imager. The spectral video stream delivered by the hardware allows the system to combine spatial, spectral, and temporal correlations into the gas detection algorithm, which significantly improves its measurement sensitivity in comparison to non-spectral video, and also in comparison to scanning spectral imaging. After describing the special calibration needs of the hardware, we show how to regularize the gas detection/identification for optimal performance, provide example SNR spectral images, and discuss the effects of humidity and absorption nonlinearity on detection and quantification.

View Article and Find Full Text PDF

Insufficient selectivity is a major constraint to the further development of metal oxide semiconductor (MOS) sensors for chemical warfare agents, and this paper proposed an improved scheme combining catalytic layer/gas-sensitive layer laminated structure with temperature dynamic modulation for the Mustard gas (HD) MOS sensor. Mustard gas simulant 2-Chloroethyl ethyl sulfide (2-CEES) was used as the target gas, (Pt + Pd + Rh)@AlO as the catalytic layer material, (Pt + Rh)@WO as the gas-sensitive layer material, the (Pt + Pd + Rh)@AlO/(Pt + Rh)@WO sensor was prepared, and the sensor was tested for 2-CEES and 12 battlefield environment simulation gases under temperature dynamic modulation. The results showed that the sensor only showed obvious characteristic peaks in the resistance response curves to HD under certain conditions (100-400 °C, the highest temperature was held for 1 s and the lowest temperature was held for 2 s), and its peak height reached 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!