Investigation of Physicochemical Characteristics of Aspergillus niger Biomass and Examination of Its Ability to Separate Butyl Acetate Isomers.

Appl Biochem Biotechnol

Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey.

Published: October 2024

Aspergillus niger is a species of fungus that is widely found in natural ecosystems and has an important role in various industrial fields and is readily available. To study the adhesion of microbial cells to solid substrates and to improve their properties, physicochemical characterization of microorganisms is extremely important. For this purpose, in this study, the surface properties of A. niger biomass were determined at low cost and with high accuracy by inverse gas chromatography (IGC), a physicochemical characterization technique. IGC experiments were conducted between 303.2 and 328.2 K at infinite dilution. Among these temperatures, various organic solvent vapors were passed over the A. niger biomass considered as stationary phase and their retention behavior was studied. Using the raw data, net retention volumes were calculated and retention diagrams were drawn. From the linear retention diagrams, the dispersive surface energy was calculated according to Dorris-Gray (48.73-46.09 mJ/m), Donnet-Park (47.12-44.50 mJ/m), Schultz (46.88-42.45 mJ/m), and Hamieh (76.42-64.06 mJ/m) methods. With the IGC method, the acidity-basicity parameters of A. niger biomass were determined and it was found that the surface was basic ( ). In the second part of this study, the butyl acetate isomer series, which are difficult to be separated by conventional methods, were effectively separated by the IGC method using A. niger stationary phase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-024-04881-yDOI Listing

Publication Analysis

Top Keywords

niger biomass
16
aspergillus niger
8
butyl acetate
8
physicochemical characterization
8
biomass determined
8
stationary phase
8
retention diagrams
8
igc method
8
niger
6
investigation physicochemical
4

Similar Publications

Benzene, toluene, ethylbenzene, and xylene (BTEX) can be found in marine and estuarine waters due to accidental spills of oil and derivatives, as well as in production water and effluents discharged from petrochemical plants. Addressing the bioremediation of these compounds in saline environments and effluents with elevated salinity levels is imperative. In this study, the halotolerance of Aspergillus niger was assessed by subjecting it to a stepwise increase in salinity, achieved through progressive addition of NaCl from 2 to 30‰ (v/v).

View Article and Find Full Text PDF

Effects of Artificially Modified Microbial Communities on the Root Growth and Development of Tall Fescue in Nutrient-Poor Rubble Soil.

Plants (Basel)

November 2024

Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.

The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.

View Article and Find Full Text PDF

Study on biogenic acid-mediated enhanced leaching of lepidolite by Aspergillus niger based on transcriptomics.

Bioresour Technol

December 2024

State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, PR China. Electronic address:

The synergistic effect between microorganisms with different modes of action can improve the leaching efficiency. In this study, biogenic acid was extracted from bacterial metabolites to induce fungal secretion, strengthen fungal leaching, and reveal the microscopic mechanism of biogenic acid stimulating fungal metabolic synthesis through transcriptome analysis. The results showed that the addition of biogenic acid increased the biomass and metabolic activity of Aspergillus Niger, changed the secretion of extracellular polymeric substances, enhanced the dissolution of mineral surface, and increased the leaching rate.

View Article and Find Full Text PDF

Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass.

Microb Cell Fact

November 2024

Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.

Background: Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides.

View Article and Find Full Text PDF

In the current work, cellulase from was successfully immobilized on a novel epoxy-affixed chromium metal-organic framework/chitosan (Cr@-MIL-101/CS) support via covalent method using glutaraldehyde as a crosslinker. The bare and cellulase-bound support was characterized by using various microscopic and spectroscopic techniques. Immobilized cellulase exhibited a high immobilization yield of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!