Quercetin Regulates Microglia M1/M2 Polarization and Alleviates Retinal Inflammation via ERK/STAT3 Pathway.

Inflammation

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.

Published: October 2024

Retinal inflammation is a pivotal characteristic observed in various retinal degenerative disorders, notably age-related macular degeneration (AMD), primarily orchestrated by the activation of microglia. Targeting the inhibition of microglial activation has emerged as a therapeutic focal point. Quercetin (Qu), ubiquitously present in dietary sources and tea, has garnered attention for its anti-neuroinflammatory properties. However, the impact of Qu on retinal inflammation and the associated mechanistic pathways remains incompletely elucidated. In this study, retinal inflammation was induced in adult male C57BL/6 J mice through intraperitoneal administration of LPS. The results revealed that Qu pre-treatment induces a phenotypic shift in microglia from M1 phenotype to M2 phenotype. Furthermore, Qu attenuated retinal inflammation and stabilized the integrity of the blood-retina barrier (BRB). In vitro experiments revealed that Qu impedes microglial activation, proliferation, and migration, primarily via modulation the ERK/STAT3 signaling pathway. Notably, these actions of Qu significantly contributed to the preservation of photoreceptors. Consequently, Qu pre-treatment holds promise as an effective strategy for controlling retinal inflammation and preserving visual function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-024-01997-5DOI Listing

Publication Analysis

Top Keywords

retinal inflammation
24
microglial activation
8
retinal
7
inflammation
6
quercetin regulates
4
regulates microglia
4
microglia m1/m2
4
m1/m2 polarization
4
polarization alleviates
4
alleviates retinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!