Tartary buckwheat protein (BWP) is well known for the wide-spectrum antibacterial activity and the lipid metabolism- regulating property; therefore, BWP can be applied as feed additives to improve the animal's nutritional supply. With the aim to investigate the bioactive actions of the BWP, growth performance, lipid metabolism and systemic immunity of the weaned piglets were measured, and the alterations of pig gut microbiota were also analyzed. According to the results, the growth performances of the weaned piglets which were calculated as the average daily gain (ADG) and the average daily feed intake (ADFI) were significantly increased when compared to the control group. Simultaneously, the serum levels of the total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were decreased, while the levels of high-density lipoprotein cholesterol (HDL-C) were increased in the BWP group. Moreover, the relative abundances of Lactobacillus, Prevotella_9, Subdoligranulum, Blautia, and other potential probiotics in the gut microbiota of weaned piglets were obviously increased in the BWP group. However, the relative abundances of Escherichia-Shigella, Campylobacter, Rikenellaceae_RC9_gut_group and other opportunistic pathogens were obviously decreased in the BWP group. In all, BWP was proved to be able to significantly improve the growth performance, lipid metabolism, and systemic immunity of the weaned piglets, and the specific mechanism might relate to the alterations of the gut microbiota. Therefore, BWP could be explored as a prospective antibiotic alternative for pig feed additives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-024-02103-y | DOI Listing |
Int J Mol Sci
January 2025
College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
To explore the relationship between intestinal mucin 2 () and weaning-induced diarrhoea in piglets, we analysed and piglets. The piglets were divided into a healthy weaned group, a weaned diarrhoea group, and a healthy unweaned control group. Intestinal tissues were collected, and goblet cell numbers, sizes, and degrees of intestinal injury were observed and recorded.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
Butyrate supplementation has gained considerable attention for its potential benefits in livestock, particularly concerning intestinal health and growth performance. This review synthesizes recent research on the diverse roles of butyrate, across various livestock species. As a short-chain fatty acid, butyrate is known for enhancing intestinal development, improving immune function, and modulating microbial diversity.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
Fifty-eight litters (16 from primiparous gilts and 42 from multiparous sows) were used, with a total number of 750 piglets involved in the study. Birth weight was stratified into three groups: low (<1.02 kg; LBW), normal (1.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
The present study aimed to explore the effect of GF powder on the growth performance, diarrhea rate, antioxidant and immune capacity, and intestinal health of weaned piglets. A total of 144 weaned piglets (8.29 ± 0.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Probiotics and their postbiotics have the potential to improve the health and growth performance of piglets, which has brought them widespread attention in the post-antibiotic era. In the present study, the effects of dietary supplementation of postbiotics on the growth performance, intestinal flora structure and plasma metabolome of weaned piglets were investigated. A total of 816 healthy male piglets with uniform weight were divided into two treatment groups: piglets in the control (CTR) group were fed with a basic diet, and the ones in the LAC group were fed with the basic diet supplemented with 500 mg/kg postbiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!