Purpose: To evaluate diagnostic performance and image quality of ultralow-dose CT (ULDCT) in diagnosing acute appendicitis with an image-based deep-learning denoising algorithm (IDLDA).
Methods: This retrospective multicenter study included 180 patients (mean ± standard deviation, 29 ± 9 years; 91 female) who underwent contrast-enhanced 2-mSv CT for suspected appendicitis from February 2014 to August 2016. We simulated ULDCT from 2-mSv CT, reducing the dose by at least 50%. Then we applied an IDLDA on ULDCT to produce denoised ULDCT (D-ULDCT). Six radiologists with different experience levels (three board-certified radiologists and three residents) independently reviewed the ULDCT and D-ULDCT. They rated the likelihood of appendicitis and subjective image qualities (subjective image noise, diagnostic acceptability, and artificial sensation). One radiologist measured image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). We used the receiver operating characteristic (ROC) analyses, Wilcoxon's signed-rank tests, and paired t-tests.
Results: The area under the ROC curves (AUC) for diagnosing appendicitis ranged 0.90-0.97 for ULDCT and 0.94-0.97 for D-ULDCT. The AUCs of two residents were significantly higher on D-ULDCT (AUC difference = 0.06 [95% confidence interval, 0.01-0.11; p = .022] and 0.05 [0.00-0.10; p = .046], respectively). D-ULDCT provided better subjective image noise and diagnostic acceptability to all six readers. However, the response of board-certified radiologists and residents differed in artificial sensation (all p ≤ .003). D-ULDCT showed significantly lower image noise, higher SNR, and higher CNR (all p < .001).
Conclusion: An IDLDA can provide better ULDCT image quality and enhance diagnostic performance for less-experienced radiologists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213764 | PMC |
http://dx.doi.org/10.1007/s00261-024-04246-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!