Arabidopsis as a model for translational research.

Plant Cell

Department of Plant and Microbial Biology, Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA.

Published: February 2024

Arabidopsis thaliana is currently the most-studied plant species on earth, with an unprecedented number of genetic, genomic, and molecular resources having been generated in this plant model. In the era of translating foundational discoveries to crops and beyond, we aimed to highlight the utility and challenges of using Arabidopsis as a reference for applied plant biology research, agricultural innovation, biotechnology, and medicine. We hope that this review will inspire the next generation of plant biologists to continue leveraging Arabidopsis as a robust and convenient experimental system to address fundamental and applied questions in biology. We aim to encourage lab and field scientists alike to take advantage of the vast Arabidopsis datasets, annotations, germplasm, constructs, methods, molecular and computational tools in our pursuit to advance understanding of plant biology and help feed the world's growing population. We envision that the power of Arabidopsis-inspired biotechnologies and foundational discoveries will continue to fuel the development of resilient, high-yielding, nutritious plants for the betterment of plant and animal health and greater environmental sustainability.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plcell/koae065DOI Listing

Publication Analysis

Top Keywords

foundational discoveries
8
plant biology
8
plant
6
arabidopsis
5
arabidopsis model
4
model translational
4
translational arabidopsis
4
arabidopsis thaliana
4
thaliana currently
4
currently most-studied
4

Similar Publications

Guidelines to Analyze ChIP-Seq Data: Journey Through QC and Analysis Considerations.

Methods Mol Biol

January 2025

Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

ChIP-Seq is used to study DNA-protein interactions, unraveling chromatin states and gene regulatory properties of transcription factors. ChIP-Seq involves immunoprecipitation followed by sequencing using Next-Generation sequencing approaches. The ENCODE consortium provides extensive guidelines for ChIP-Seq analysis.

View Article and Find Full Text PDF

Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia.

Nat Prod Bioprospect

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.

Fifteen novel carbazole alkaloids, euchrestifolines A-O (1-15), were obtained from Murraya euchrestifolia. Their structures were elucidated by spectroscopic analysis, Mosher's ester, calculated ECD, and transition metal complex ECD methods. Notably, euchrestifolines A-C (1-3) are the first naturally occurring pyrrolidone carbazoles to be identified, while euchrestifolines D-F (4-6) represent rare carbazole alkaloids containing a phenylpropanyl moiety; euchrestifoline G (7) features a unique benzopyranocarbazole skeleton.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B).

View Article and Find Full Text PDF

Targeting Cancer-Associated Fibroblasts: Eliminate or Reprogram?

Cancer Sci

January 2025

Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.

Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME). Given their various roles in tumor progression and treatment resistance, CAFs are promising therapeutic targets in cancer. The elimination of tumor-promoting CAFs has been investigated in various animal models to determine whether it effectively suppresses tumor growth.

View Article and Find Full Text PDF

Cancer immunotherapy, specifically Chimeric Antigen Receptor (CAR)-T cell therapy, represents a significant breakthrough in treating cancers. Despite its success in hematological cancers, CAR-T exhibits limited efficacy in solid tumors, which account for more than 90% of all cancers. Solid tumors commonly present unique challenges, including antigen heterogeneity and complex tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!