This perspective review focuses on the results of an internally consistent study developed in the Perugia laboratory, centered on the fundamental interaction components that, at large intermolecular distances, determine the formation of weak intermolecular hydrogen (HB) and halogen (XB) bonds. This investigation exploits old and novel molecular beam scattering experiments involving several gaseous prototypical systems. In particular, we focus on the kinetic energy dependence of the total (elastic + inelastic) integral cross-sections. Of particular interest is the measure of quantum interference patterns in the energy dependence of cross-sections of targeted systems and their shift compared to that of known reference systems. We interpreted these findings as interaction energy stabilization components, such as charge transfer, σ-hole, and polar flattening, that emerge at intermediate separation distance ranges and selectively manifest for specific geometries of collision complexes. Another significant observable we discuss is the absolute value of the cross-section and its dependence on permanent multipole moments of the collisional partners. Specifically, we show how the spontaneous orientation of rotationally cold and polar molecules, due to the electric field gradient associated with the interaction between permanent multipole moments, can significantly modify the magnitude of the total cross-section, even at high values of the impact parameter. We are confident that the present results can help extend the force field formulation to various interacting systems and carry out molecular dynamics simulations under conditions of application interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp05871a | DOI Listing |
Chem Sci
December 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Applied Animal Science & Welfare, Swedish University of Agricultural Sciences (SLU), Box 7024, 753 23 Uppsala, Sweden.
Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Deparment of Hepatobiliary Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
This study introduces a novel approach for non-small cell lung cancer (NSCLC) treatment by developing BiSe-Polysorbate nanoparticles as a multifunctional platform for photothermal therapy and targeted drug delivery. The BiSe-Polysorbates nanoparticles are engineered as innovative photosensitive drug carriers, enhancing biocompatibility through the combination of BiSe and Polysorbates. Characterization techniques such as Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy confirm the successful synthesis of the nanoparticles.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia.
The asymmetric unit of the title compound, CHN·Br·CFI, contains one 2,2,6,6 tetra-methyl-piperidine-1-ium cation, one 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecule, and one uncoordinated bromide anion. In the crystal, the bromide anions link the 2,2,6,6-tetra-methyl-piperidine mol-ecules by inter-molecular C-H⋯Br and N-H⋯Br hydrogen bonds, leading to dimers, with the coplanar 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecules filling the space between them. There is a π-π interaction between the almost parallel benzene rings [dihedral angle = 10.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States.
Eukaryotic plasma membranes exhibit nanoscale lateral lipid heterogeneity, a feature that is thought to be central to their function. Studying these heterogeneities is challenging since few biophysical methods are capable of detecting domains at submicron length scales. We recently showed that cryogenic electron microscopy (cryo-EM) can directly image nanoscale liquid-liquid phase separation in extruded liposomes due to its ability to resolve the intrinsic thickness and electron density differences of ordered and disordered phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!