Ionic liquids and their various analogues are without doubt the scientific sensation of the last few decades, paving the way to a more sustainable society. Their versatile suite of properties, originating from an almost inconceivably large number of possible cation and anion combinations, allows tuning of the structure to serve a desired purpose. Ionic liquids hence offer a myriad of useful applications from solvents to catalysts, through to lubricants, gas absorbers, and azeotrope breakers. The purpose of this review is to explore the more unexpected of these applications, particularly in the energy space. It guides the reader through the application of ionic liquids and their analogues as i) phase change materials for thermal energy storage, ii) organic ionic plastic crystals, which have been studied as battery electrolytes and in gas separation, iii) key components in the nitrogen reduction reaction for sustainable ammonia generation, iv) as electrolytes in aluminum-ion batteries, and v) in other emerging technologies. It is concluded that there is tremendous scope for further optimizing and tuning of the ionic liquid in its task, subject to sustainability imperatives in line with current global priorities, assisted by artificial intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313023DOI Listing

Publication Analysis

Top Keywords

ionic liquids
16
liquids analogues
8
ionic
6
unexpected energy
4
energy applications
4
applications ionic
4
liquids
4
liquids ionic
4
analogues doubt
4
doubt scientific
4

Similar Publications

A Dynamic Metal-Organic Radical Emission System.

Angew Chem Int Ed Engl

December 2024

Donghua University - Songjiang Campus: Donghua University, College of chemistry, chemical engineering and biotechnology, 2999 Renmin North Road, Shanghai, 201620, Shanghai, CHINA.

Developing new organic radical emission systems and regulating their luminescence properties presents a significant challenge. Herein, we build dynamic and multi-emission band radical luminescence systems by co-assembling inorganic metal salts with carbonyl compounds in ionic liquids. After the assembling, dual-band, and excitation wavelength-dependent emission was observed upon light irradiation, one emission band originates from carbonyl radical after light irradiation, the other band from the ligand-metal charge transfer (LMCT) state, which benefits from the charge transfer from the radicals to the metal salts.

View Article and Find Full Text PDF

This study introduces a novel and sustainable approach using Ionic Liquids (ILs) as a non-innocent solvent that enhances the performance of the basic catalysts to depolymerize polyurethane foam wastes (PUFWs) through hydrolysis, alcoholysis or aminolysis under mild conditions. The system is stable, fully recoverable, and reusable. Hydrolysis of PUFWs can occur in just 2 minutes at 95-98 °C, producing a white polyol that is easily separated and reused in new polyurethane synthesis.

View Article and Find Full Text PDF

Design and Synthesis of Novel Dual-Functional Protic Ionic Liquids with a Superior High CO Absorption Efficiency.

J Phys Chem B

December 2024

Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.

As a predictive tool, quantum chemical calculations can be used to design protic ionic liquids (PILs) and predict the result. By adding anionic negative potential sites, two dual-functional PILs diethylenetriamine-barbituric acid [CHN][CHNO] and diethylenetriamine-ethylenolactonium [CHN][CHNO] were designed. The simulation results indicated that multisite absorption of anions and cations resulted in an expected absorption ratio exceeding 3:1 (mol CO:mol ILs).

View Article and Find Full Text PDF

Thermodynamics and transport in molten chloride salts and their mixtures.

Phys Chem Chem Phys

December 2024

School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.

View Article and Find Full Text PDF

Cryogenic TOF-SIMS Around Sublimation Temperature of Quench-Condensed Noble Gas (Ne, Ar, and Kr) Films.

J Mass Spectrom

January 2025

Research Center for Energy and Environmental Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.

A possible TOF-SIMS analysis of surface phase transitions has recently been proposed for limited cases such as polymers and ionic liquids. In the present study, we have extended this analysis to quench-condensed noble gas films. The newly developed cryogenic TOF-SIMS allowed both measurements of TOF-SIMS below 4 K, and low-energy ion scattering spectroscopy that is used to prepare a clean surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!