We report a detailed density functional theory and molecular dynamics study of hydrogen bonding between trehalose and water, with a special emphasis on interactions in the amorphous solid state. For comparison, water-water interactions in water dimers and tetramers are evaluated using quantum calculations. The results show that the hydrogen bonding energy is dependent not only on the geometry (bond length and angle) but also on the local environment of the hydrogen bond. This is seen in quantum calculations of complexes in vacuum as well as in amorphous solid states with periodic boundary conditions. The temperature-induced glass transition in the trehalose-water system was studied using molecular dynamics simulations with varying cooling and heating rates. The obtained parameters of the glass transition are in good agreement with the experiments. Moreover, the dehydration of trehalose in the glassy state was investigated through a gradual dehydration with multiple small steps under isothermal conditions. From these simulations, the values of water sorption energy at different temperatures were obtained. The partial molar enthalpy of mixing of water value of -18 kJ/mol found in calorimetric experiments was accurately reproduced in these simulations. These findings are discussed in light of the hydrogen bonding data in the system. We conclude that the observed exothermic effect is due to different responses of liquid and glassy matrices to perturbations associated with the addition or removal of water molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0194537 | DOI Listing |
J Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFNat Commun
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:
In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
Naphthalene acetic acid (NAA) is an auxin plant growth regulator (PGR) and widely used to regulate the growth process of plants. As excessive NAA enter the environment, it damages the ecological environment and endangers human life and health. Layered bimetallic hydroxides (LDHs) are widely used for the adsorption of pollutants due to their large surface area and excellent structural properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!