31P nuclear magnetic resonance (NMR) chemical shifts were shown to be very sensitive to the basis set used at the geometry optimization stage. Commonly used energy-optimized basis sets for a phosphorus atom containing only one polarization d-function were shown to be unable to provide correct equilibrium geometries for the calculations of phosphorus chemical shifts. The use of basis sets with at least two polarization d-functions on a phosphorus atom is strongly recommended. In this paper, an idea of creating the basis sets purposed for the geometry optimization that provide the least possible error coming from the geometry factor of accuracy in the resultant NMR shielding constants is proposed. The property-energy consisted algorithm with the target function in the form of the molecular energy gradient relative to P-P bond lengths was applied to create new geometry-oriented pecG-n (n = 1, 2) basis sets for a phosphorus atom. New basis sets have demonstrated by far superior performance as compared to the other commonly used energy-optimized basis sets in massive calculations of 31P NMR chemical shifts carried out at the gauge-including atomic orbital-coupled cluster singles and doubles/pecS-2 level of the theory by taking into account solvent, vibrational, and relativistic corrections.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0193227DOI Listing

Publication Analysis

Top Keywords

basis sets
28
chemical shifts
16
nmr chemical
12
geometry optimization
12
phosphorus atom
12
geometry factor
8
factor accuracy
8
calculations 31p
8
31p nmr
8
basis
8

Similar Publications

Background: Endogenous Alu RNAs form double-stranded RNAs recognized by double-stranded RNA sensors and activate IRF and NF-kB transcriptional paths and innate immunity. Deamination of adenosines to inosines by the ADAR family of enzymes, a process termed A-to-I editing, disrupts double-stranded RNA structure and prevents innate immune activation. Innate immune activation is observed in Alzheimer's disease, the most common form of dementia.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for benign prostatic hyperplasia.

Sci Rep

January 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, People's Republic of China.

Benign prostatic hyperplasia (BPH) is a prevalent urinary system disorder. Despite evidence of a significant genetic component from previous studies, the specific pathogenic genes and biological mechanisms are still largely unknown. The study utilized the FinnGen R10 dataset, encompassing 177,901 individuals (36,601 cases and 141,300 controls), and the GTEx v8 EQTLs files to conduct single-tissue and cross-tissue transcriptome-wide association studies (TWAS).

View Article and Find Full Text PDF

Correctly fixing the integer ambiguity of GNSS is the key to realizing the application of GNSS high-precision positioning. When solving the float solution of ambiguity based on the double-difference model epoch by epoch, the common method for resolving the integer ambiguity needs to solve the coordinate parameter information, due to the influence of limited GNSS phase data observations. This type of method will lead to an increase in the ill-posedness of the double-difference solution equation, so that the fixed success rate of the integer ambiguity is not high.

View Article and Find Full Text PDF

Gas sensors play a vital role in detecting gases in the air, converting their concentrations into electrical signals for industrial, environmental, and safety applications. This study used density functional theory methods to explore the mechanism and sensitivity of a PdO-graphene composite sensor towards various gases (CO, NO, NO, HS, and Cl). All calculations, including structure, energy, and frequency optimizations, were performed using the Gaussian software with appropriate configurations and basis sets.

View Article and Find Full Text PDF

Background: Post-activation performance enhancement (PAPE) has demonstrated efficacy in acutely improving athletic performance. However, its distinction from general warm-up (GW) effects remains ambiguous, and experimental designs adopted in most PAPE studies exhibit important limitations.

Objectives: The aims of this work are to (i) examine the effects of research methodology on PAPE outcomes, (ii) explore PAPE outcomes in relation to comparison methods, performance measures, GW comprehensiveness, recovery duration, participants' characteristics, conditioning activity (CA) parameters, and (iii) make recommendations for future PAPE experimental designs on the basis of the results of the meta-analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!