Organoboron-mediated polymerizations.

Chem Soc Rev

MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.

Published: April 2024

The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO, CO, COS, CS, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cs00115fDOI Listing

Publication Analysis

Top Keywords

organoboron compounds
16
organoboron-mediated polymerizations
12
radical polymerization
8
lewis pair
8
pair polymerization
8
compounds mediate
8
polymerization
6
polymerizations scientific
4
scientific community
4
community witnessed
4

Similar Publications

Low-Temperature Borylation of C(sp)-O Bonds of Alkyl Ethers by Gold-Metal Oxide Cooperative Catalysis.

J Am Chem Soc

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan.

Article Synopsis
  • * It highlights the effectiveness of gold nanoparticles on Lewis acidic metal oxides, like α-FeO, in catalyzing the conversion of dialkyl ethers and diborons at around room temperature, yielding high amounts of alkylboronates.
  • * Mechanistic studies show that the reaction occurs at the interface between the nanoparticles and metal oxides, where strong Lewis acid sites are formed, illustrating a novel technology for sustainably synthesizing valuable organoboron compounds.
View Article and Find Full Text PDF

α-Functionalized Si-, Ge-, B-, Se-, and S-amide moieties are present in many medicinally active molecules, but their synthesis remains challenging. Here, we demonstrate a high-throughput synthesis using amide-sulfoxonium ylides as carbene precursors in a Si-H, Ge-H, B-H, Se-H, and S-H insertion reactions to target a wide range of α-silyl, α-geryl, α-boryl, α-selenyl, and α-sulfur (hetero)amides. The process is featured as simple operation, mild conditions, broad substrate scope, high functional group compatibility, and excellent chemoselectivity.

View Article and Find Full Text PDF

Highly Sensitive Solid Ratiometric Luminescent Thermometer Based on N,C-Chelating Four-Coordinate Organoboron Compounds.

Inorg Chem

December 2024

State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

Article Synopsis
  • Researchers developed a series of specific organoboron compounds aimed at improving ratiometric thermometers using single-component organic materials.
  • One of the compounds showed promising results as a luminescent thermometer, boasting a high temperature sensitivity of 3.67% per Kelvin and functioning effectively within a wide temperature range of 120-280 Kelvin.
  • The effectiveness of this thermometer is attributed to temperature-induced changes in how the molecules stack together, providing a novel approach to designing photonic thermometers.
View Article and Find Full Text PDF

Co-Catalyzed Suzuki-Miyaura Coupling of Organoboronic Acids and Alkynyl Chlorides Using Potassium Bicarbonate as Base.

Org Lett

November 2024

Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.

Organoboronic acids, some of the most common and widely used organoboron compounds, have not yet been used in the cobalt-catalyzed cross coupling reactions, despite cobalt demonstrating good reactivity with zinc reagents, Grignard reagents, and metal organoborates that are formed by -butyl lithium or alkaline metal alkoxide salts and organoboron esters. Herein, a highly efficient and practical cobalt-catalyzed coupling reaction of aryl/alkenyl boronic acids and alkynyl chloride under mild reaction conditions is reported. The advantages of the organoboronic acids, along with a broad functional group compatibility and the reaction's tolerance to moisture and air, enable this reaction to be a synthetically useful protocol for the construction of a C(sp)-C(sp) bond.

View Article and Find Full Text PDF

This study aims to develop a method for the chiral analysis of organoboron compounds using nuclear magnetic resonance (NMR) spectroscopy. It addresses the longstanding challenge associated with these chiral organoboron compounds, which often require derivatization and pretreatment prior to chromatographic analysis. Our method utilizes tridentate ligands to facilitate effective ligand exchange and incorporates fluorine labels, allowing for the precise discrimination of F NMR signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!