Developing a positive view of the self is important for maintaining a good mental health, as feeling negative about the self increases the risk of developing internalizing symptoms such as feelings of depression and anxiety. Even though autistic individuals regularly struggle with these internalizing feelings, and both self-concept and internalizing feelings are known to develop during adolescence, there is a lack of studies investigating the development of positive self-concept and self-esteem in autistic adolescents. Here, we studied academic, physical, and prosocial self-concept as well as self-esteem in adolescent males with and without autism on both the behavioral and neural level. We additionally focused on similarities in one's own and peers' perspectives on the self, and we assessed a potential role of alexithymia (i.e. having trouble identifying and describing one's feelings) in developing a more negative view of the self. Results showed that there were no group differences in self-esteem, self-concept, or underlying neural activation. This shows that autistic adolescent males use the same neural processes when they evaluate their traits. However, regardless of clinical diagnosis, a higher number of autism traits was related to a less positive physical and prosocial self-concept, whereas more difficulty identifying one's feelings was related to lowered self-esteem and less activation in medial prefrontal cortex during self-evaluations. Therefore, in treatment of autistic adolescents with low self-esteem, it is important to take into account and possibly aim to improve alexithymic traits as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403929PMC
http://dx.doi.org/10.1177/13623613241232860DOI Listing

Publication Analysis

Top Keywords

behavioral neural
8
self-concept self-esteem
8
internalizing feelings
8
autistic adolescents
8
physical prosocial
8
prosocial self-concept
8
adolescent males
8
one's feelings
8
self-concept
6
self-esteem
6

Similar Publications

Disentangling the neural underpinnings of response inhibition in disruptive behavior and co-occurring ADHD.

Eur Child Adolesc Psychiatry

January 2025

Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development.

Autism Res

January 2025

Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China.

Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive.

View Article and Find Full Text PDF

Background: Although childhood maltreatment (CM) is widely recognized as a transdiagnostic risk factor for various internalizing and externalizing psychological disorders, the neural basis underlying this association remain unclear. The potential reasons for the inconsistent findings may be attributed to the involvement of both common and specific neural pathways that mediate the influence of childhood maltreatment on the emergence of psychopathological conditions.

Methods: This study aimed to delineate both the common and distinct neural pathways linking childhood maltreatment to depression and aggression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!