Propidium iodide (PI) and YO-PRO-1 (YPI) dyes are routinely used to determine sperm viability in many livestock species. It is commonly accepted that these dyes penetrate only sperm cells with damaged plasma membranes. Recently, however, the mechanism of dye uptake unrelated to damaged plasma membranes, but instead related to pannexin channels in dog and stallion sperm cells was demonstrated. This pilot study aimed to evaluate the role of pannexins in the uptake of PI and YPI dyes on Wallachian frozen-thawed ram spermatozoa by flow cytometry using probenecid, a specific inhibitor of pannexin channels. Additionally, the expression of pannexins in Wallachian sperm was evaluated directly (by qRT-PCR). The results demonstrate the active role of pannexin channels in the uptake of PI and YPI dyes on frozen-thawed Wallachian ram sperm. In conclusion, when using the PI or YPI exclusion assay to determine Wallachian frozen-thawed ram sperm viability, the danger of overestimating the number of spermatozoa with the damaged plasma membrane must be considered. The observed breed-specific, and more importantly, individual differences in gene expression as well as in dye uptake indicate the need for further studies.

Download full-text PDF

Source
http://dx.doi.org/10.14712/fb2023069040127DOI Listing

Publication Analysis

Top Keywords

pannexin channels
16
wallachian frozen-thawed
12
frozen-thawed ram
12
ypi dyes
12
damaged plasma
12
pilot study
8
propidium iodide
8
iodide yo-pro-1
8
ram spermatozoa
8
sperm viability
8

Similar Publications

Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.

View Article and Find Full Text PDF

Pannexin 1 (PANX1) forms cell-surface channels capable of releasing signaling metabolites for diverse patho-physiological processes. While inhibiting dysregulated PANX1 has been proposed as a therapeutic strategy for many pathological conditions, including inflammatory bowel disease (IBD), low efficacy, or poor specificity of classical PANX1 inhibitors introduces uncertainty for their applications in basic and translational research. Here, hit-to-lead optimization is performed and a naphthyridone, compound 12, is identified as a new PANX1 inhibitor with an IC of 0.

View Article and Find Full Text PDF

Cryo-EM structure of the human Pannexin-3 channel.

Biochem Biophys Res Commun

January 2025

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan. Electronic address:

Pannexin-3 (PANX3) is a member of the pannexin family of large-pore, ATP-permeable channels conserved across vertebrates. PANX3 contributes to various developmental and pathophysiological processes by permeating ATP and Ca ions; however, the structural basis of PANX3 channel function remains unclear. Here, we present the cryo-EM structure of human PANX3 at 2.

View Article and Find Full Text PDF

Pannexin 1 (PANX1) is a member of a topologically related and stoichiometrically diverse family of large pore membrane ion channels that support the flux of signaling metabolites (e.g., ATP) and fluorescent dyes.

View Article and Find Full Text PDF

Pannexin 1 (Panx1) constitutes a large pore channel responsible for the release of adenosine triphosphate (ATP) from apoptotic cells. Strong evidence indicates that caspase-mediated cleavage of the C-terminus promotes the opening of the Panx1 channel by unplugging the pore. However, this simple pore-plugging mechanism alone cannot account for the observation that a Panx1 construct ending before the caspase cleavage site remains closed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!