Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901194 | PMC |
http://dx.doi.org/10.1080/14756366.2024.2305833 | DOI Listing |
Se Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China.
Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, China. Electronic address:
Background: Foodborne pathogenic bacteria lead to a significant increase in illnesses and fatalities annually. In the early stage of a pathogenic bacterial infection, the concentration of bacteria in food is lower than the detection limit of most technology which enhances the difficulty in diagnosis. It is a serious challenge for researchers to develop a rapid, sensitive, accurate, and stable pathogenic bacterial determination method without costly equipment and highly skilled operators.
View Article and Find Full Text PDFChemSusChem
January 2025
Comenius University FNS: Univerzita Komenskeho v Bratislave Prirodovedecka fakulta, Organic chemistry, Mlynska dolina, Ilkovicova 6, 84215, Bratislava, SLOVAKIA.
Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!