Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stereospecific recognition of chiral molecules plays a crucial role in biological systems. The μ-opioid receptor (MOR) exhibits binding affinity towards (-)-morphine, a well-established gold standard in pain management, while it shows minimal binding affinity for the (+)-morphine enantiomer, resulting in a lack of analgesic activity. Understanding how MOR stereoselectively recognizes morphine enantiomers has remained a puzzle in neuroscience and pharmacology for over half-a-century due to the lack of direct observation techniques. To unravel this mystery, we constructed the binding and unbinding processes of morphine enantiomers with MOR via molecular dynamics simulations to investigate the thermodynamics and kinetics governing MOR's stereoselective recognition of morphine enantiomers. Our findings reveal that the binding of (-)-morphine stabilizes MOR in its activated state, exhibiting a deep energy well and a prolonged residence time. In contrast, (+)-morphine fails to sustain the activation state of MOR. Furthermore, the results suggest that specific residues, namely D114 and D147, are deprotonated in the active state of MOR bound to (-)-morphine. This work highlights that the selectivity in molecular recognition goes beyond binding affinities, extending into the realm of residence time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896590 | PMC |
http://dx.doi.org/10.1093/nsr/nwae029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!