Introduction: Posttraumatic stress disorder (PTSD) is the most common mental health disorder to develop following exposure to trauma. Studies have reported conflicting results regarding changes in immune biomarkers and alterations in the abundance of bacterial taxa and microbial diversity in patients with PTSD.
Aim: The purpose of this meta-analysis is to summarize existing studies examining gut microbiota characteristics and changes in immune biomarkers in patients with PTSD.
Methods: Relevant studies were systematically searched in PubMed, Scopus, and Embase, published in English between January 1, 1960, and December 1, 2023. The outcomes included changes in abundance and diversity in gut microbiota (gut microbiota part) and changes in immune biomarkers (immune part).
Results: The meta-analysis included a total of 15 studies, with 9 focusing on changes in inflammatory biomarkers and 6 focusing on changes in gut microbiota composition in patients with PTSD. No differences were observed between groups for all inflammatory biomarkers (P≥0.05). Two of the six studies found that people with PTSD had less alpha diversity. However, the overall Standardized Mean Difference (SMD) for the Shannon Diversity Index was not significant (SMD 0.27, 95% CI -0.62-0.609, p = 0.110). Regarding changes in abundance, in two of the studies, a significant decrease in Lachnospiraceae bacteria was observed.
Conclusion: This meta-analysis provides a comprehensive overview of gut microbiota characteristics in PTSD, suggesting potential associations with immune dysregulation. Future research should address study limitations, explore causal relationships, and consider additional factors influencing immune function in individuals with PTSD.
Systematic Review Registration: https://www.crd.york.ac.uk, identifier CRD42023476590.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895958 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1349883 | DOI Listing |
World J Diabetes
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
Background: Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus (T2DM) among children and adolescents worldwide. Due to rapid disease progression, severe long-term cardiorenal complications, a lack of effective treatment strategies, and substantial socioeconomic burdens, it has become an urgent public health issue that requires management and resolution. Adolescent T2DM differs from adult T2DM.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, Yunnan Province, China.
The onset and progression of type 2 diabetes mellitus (T2DM) are strongly associated with imbalances in gut bacteria, making the gut microbiome a new potential therapeutic focus. This commentary examines the recent publication in . The article explores the association between T2DM and gut microbiota, with a focus on the pathophysiological changes related to dysbiosis.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China.
This editorial, inspired by a recent study published in the , covers the research findings on microbiota changes in various diseases. In recurrent colorectal polyps, the abundances of , , and increase, while those of and decrease. This dysbiosis may promote the formation and recurrence of polyps.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.
Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.
Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.
Front Antibiot
October 2022
Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
A healthy development is denied to millions of children worldwide as harsh life conditions manifest themselves in an altered inflammation-prone microbiome crosstalk environment. Keynote of this tragedy is that insufficient nutritious amino acid blocks lipids-intake to sustain diverse microbiota, and promotes the generalist strategy followed by -besides other proteobacteria- of shifting gut metabolism, subverting the site specificity of first immune reaction. Furthermore, it could be hypothesized that selective success lies in their ability to induce inflammation, since this phenomenon also fuels horizontal gene transfer (HGT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!