Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders diagnosed in childhood. Two common features of ADHD are impaired behavioural inhibition and sustained attention. The Go/No-Go experimental paradigm with concurrent functional magnetic resonance imaging (fMRI) scanning has previously revealed important neurobiological correlates of ADHD such as the supplementary motor area and the prefrontal cortex. The coordinate-based meta-analysis combined with quantitative techniques, such as activation likelihood estimate (ALE) generation, provides an unbiased and objective method of summarising these data to understand the brain network architecture and connectivity in ADHD children. Go/No-Go task-based fMRI studies involving children and adolescent subjects were selected. Coordinates indicating foci of activation were collected to generate ALEs using threshold values (voxel-level: < 0.001; cluster-level: < 0.05). ALEs were matched to one of seven canonical brain networks based on the cortical parcellation scheme derived from the Human Connectome Project. Fourteen studies involving 457 children met the eligibility criteria. No significant convergence of Go/No-Go related brain activation was found for ADHD groups. Three significant ALE clusters were detected for brain activation relating to controls or ADHD < controls. Significant clusters were related to specific areas of the default mode network (DMN). Network-based analysis revealed less extensive DMN, dorsal attention network, and limbic network activation in ADHD children compared to controls. The presence of significant ALE clusters may be due to reduced homogeneity in the selected sample demographic and experimental paradigm. Further investigations regarding hemispheric asymmetry in ADHD subjects would be beneficial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896184 | PMC |
http://dx.doi.org/10.1515/tnsci-2022-0299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!