The Role of Ocimene in Decreasing α-Synuclein Aggregation using Rotenone-induced Rat Model.

Cent Nerv Syst Agents Med Chem

Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kancheepuram, 603 203, Tamil Nadu, India.

Published: September 2024

Background: Parkinson's disease is defined by the loss of dopaminergic neurons in the midbrain of substantia nigra associated with Lewy bodies. The precise mechanism is not yet entirely understood.

Objective: The study aims to determine whether ocimene has antiparkinsonian activity by reducing α-Synuclein aggregation levels in the brains of rotenone-induced rat models.

Methods: 36 male rats were used for six groups, with six animals in each group. Vehicle, control (rotenone, 2.5 mg/kg, i.p), standard (L-Dopa, 10 mg/kg, i.p), Test drug of low dose (66.66 mg/kg, i.p), medium dose (100 mg/kg, i.p), and high dose (200 mg/kg, i.p) were administered to the rats. The open field, actophotometer, hanging wire, and catalepsy tests were used to assess the rat's motor performance. The expressions of biomarkers such as AchE, D2 Receptor, and α- Synuclein were evaluated, and their level of expression in the brain samples was checked using ELISA. Histopathological analysis was also carried out to determine the degree of neuron degeneration in the brain samples.

Results: The open field test showed significant anxiety levels, whereas test groups showed fewer anxiety levels but increased motor activity. The biochemical tests revealed that rotenonetreated rats had higher levels of AchE, but ocimene-treated rats had a significant decrease in AchE levels. The test drug-treated rats also expressed high levels of D2 receptors. In ocimenetreated rats, α-Synuclein aggregation was reduced, however, in rotenone-treated rats' brain samples, higher clumps of α-Synuclein were observed.

Conclusion: Ocimene has neuroprotective properties. As a result, this essential oil might be helpful as a therapeutic treatment for Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715249283425240212111523DOI Listing

Publication Analysis

Top Keywords

α-synuclein aggregation
12
rotenone-induced rat
8
parkinson's disease
8
open field
8
brain samples
8
anxiety levels
8
levels test
8
levels
6
rats
6
mg/kg
5

Similar Publications

Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery.

Biomacromolecules

January 2025

Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.

The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.

View Article and Find Full Text PDF

Benzene degradation under anoxic conditions was first reported more than 25 years ago; however, the activation mechanism in the absence of oxygen remains elusive. Progress has been hindered by the difficulty in cultivating anaerobic benzene-degrading enrichment cultures. Our laboratory has sustained a methanogenic enrichment culture harboring ORM2, a benzene fermenter distinct from any known genus but related to other known or predicted benzene degraders.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Method to define recommended portion sizes for consumer guidance.

Eur J Nutr

January 2025

School of Agriculture and Food Science, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.

Purpose: Provision of nutrition information is mandated for packaged foods, but few countries regulate serving sizes. Our objective was to develop a methodology to establish globally consistent portion size recommendations for both nutrient-dense and discretionary foods.

Methods: A stepwise systematic approach incorporated portion values from serving size regulations (n = 10), food-based dietary guidelines (FBDG; n = 90, aggregated into 6 regions), and reported food intakes from Europe and Australia.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) in the tumor microenvironment are prognostically beneficial in many solid cancer types. Reports on TLS in high-grade serous tubo-ovarian carcinoma (HGSC) are few, and the prognostic impact is unclear. We investigated mature TLS (mTLS), immature TLS (iTLS) and lymphoid aggregates (LA) in primary adnexal tumors (PTs) and synchronous omental/peritoneal metastases (pMets) of HGSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!