Nanotechnology offers significant advantages for medical imaging and therapy, including enhanced contrast and precision targeting. However, integrating these benefits into ultrasonography is challenging due to the size and stability constraints of conventional bubble-based agents. Here bicones, truly tiny acoustic contrast agents based on gas vesicles (GVs), a unique class of air-filled protein nanostructures naturally produced in buoyant microbes, are described. It is shown that these sub-80 nm particles can be effectively detected both in vitro and in vivo, infiltrate tumors via leaky vasculature, deliver potent mechanical effects through ultrasound-induced inertial cavitation, and are easily engineered for molecular targeting, prolonged circulation time, and payload conjugation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602542PMC
http://dx.doi.org/10.1002/adma.202307106DOI Listing

Publication Analysis

Top Keywords

tiny acoustic
8
imaging therapy
8
acoustic biomolecules
4
biomolecules ultrasound
4
ultrasound imaging
4
therapy nanotechnology
4
nanotechnology offers
4
offers advantages
4
advantages medical
4
medical imaging
4

Similar Publications

Due to the fluidity of the loose medium inside the waste dump slope, the traditional monitoring system cannot fully reflect the misalignment and slip between particles inside the medium, and it is also difficult to capture the precursor information of the slip of the loose accumulation body. To reveal the dynamic evolution process of the slope instability of the waste dump slope, the coupling test system of the slope instability of the waste dump slope was used to carry out the study of the acoustic emission characteristics of the slope instability dynamic response of the dump slope under the action of vibration, and to quantitatively analyse the staged characteristics of the acoustic emission parameter evolution of the dump slope under the action of different vibration frequencies and its instability initiation node. The results show that with the increase of vibration frequency, the damage mode of the slope model gradually changes from sliding of small particles to large-scale landslides, and presents the stage process of "vibration compaction → vibration equilibrium → dynamic instability"; Under the action of low-frequency and high-amplitude, the slope model mainly shows that the tiny particles and the basement gravel slip, which is difficult to capture with the naked eye, while under the action of high-frequency and low-amplitude, the slope surface is damaged in a large area, and the overall model is unstable; The dynamic instability of the waste dump slope is accompanied by obvious acoustic emission activities, and the changes of the characteristic parameters of acoustic emission reveal, to a certain extent, the evolution of the internal state of the slope in the process of dynamic instability of the waste dump slope and its stage characteristics; The amplitude and energy efficiency of acoustic emission in the time domain show obvious fractal characteristics in the dynamic instability of the waste dump slope.

View Article and Find Full Text PDF

LocoMote: AI-driven Sensor Tags for Fine-Grained Undersea Localization and Sensing.

IEEE Sens J

May 2024

Dept. of Electrical and Computer Engineering and the Dept. of Computer Science, University of California - Los Angeles, Los Angeles, CA 90095, USA.

Long-term and fine-grained maritime localization and sensing is challenging due to sporadic connectivity, constrained power budget, limited footprint, and hostile environment. In this paper, we present the design considerations and implementation of , a rugged ultra-low-footprint undersea sensor tag with on-device AI-driven localization, online communication, and energy-harvesting capabilities. uses on-chip (< 30 kB) neural networks to track underwater objects within 3 meters with ~6 minutes of GPS outage from 9DoF inertial sensor readings.

View Article and Find Full Text PDF

During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor of an electromagnetic acoustic transducer (EMAT) and pulse eddy current (PEC) is designed. We use the amplitude of a bottom echo recorded by EMAT to identify the tiny bottom crack as well as the amplitude of PEC signals picked up by the integrated symmetric coils to measure the average lift-off of the probe in real time.

View Article and Find Full Text PDF

Ultrasonic-driven degradation of organic pollutants using piezoelectric catalysts WS/BiWO heterojunction composites.

Chemosphere

September 2024

College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China. Electronic address:

Water pollution has been made worse by the widespread use of organic dyes and their discharge, which has coincided with the industry's rapid development. Piezoelectric catalysis, as an effective wastewater purification method with promising applications, can enhance the catalyst activity by collecting tiny vibrations in nature and is not limited by sunlight. In this work, we designed and synthesized intriguing WS/BiWO heterojunction nanocomposites, investigated their shape, structure, and piezoelectric characteristics using a range of characterization techniques, and used ultrasound to accelerate the organic dye Rhodamine B (RhB) degradation in wastewater.

View Article and Find Full Text PDF

Programmable Modular Acoustic Microrobots.

Int Conf Manip Autom Robot Small Scales

October 2023

Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA.

Microrobots have emerged as promising tools for biomedical and in vivo applications, leveraging their untethered actuation capabilities and miniature size. Despite extensive research on diversifying multi-actuation modes for single types of robots, these tiny machines tend to have limited versatility while navigating different environments or performing specific tasks. To overcome such limitations, self-assembly microstructures with on-demand reconfiguration capabilities have gained recent attention as the future of biocompatible microrobotics, as they can address drug delivery, microsurgery, and organoid development processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!