The flexible protective coatings and substrates frequently exhibit unstable bonding in industrial applications. For strong interfacial adhesion of heterogeneous materials and long-lasting adhesion of flexible protective coatings even in harsh corrosive environments. Inspired by the interdigitated structures in Phloeodes diabolicus elytra, a straightforward magnetic molding technique is employed to create an interlocking microarray for reinforced heterogeneous assembly. Benefiting from this bio-inspired microarrays, the interlocking polydimethylsiloxane (PDMS) coating recorded a 270% improvement in tensile adhesion and a 520% increase in shear resistance, approaching the tensile limitation of PDMS. The elastic polyurethane-polyamide (PUPI) coating equipped with interlocking structures demonstrated a robust adhesion strength exceeding 10.8 MPa and is nearly unaffected by the corrosion immersion. In sharp contrast, its unmodified counterpart exhibited low initial adhesion and maintain ≈20% of its adhesion strength after 30 d of immersion. PUPI coating integrated with microarrays exhibits superior resistance to corrosion (30 d, |Z| ≈10Ω cm, R≈10 Ω cm), cavitation and long-term adhesion retention. These interlocking designs can also be adapted to curved surfaces by 3D printing and enhances heterogeneous assembly of non-bonded materials like polyvinylidene fluoride (PTFE) and PDMS. This bio-inspired interlocking structures offers a solution for durably bonding incompatible interfaces across varied engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202312037 | DOI Listing |
Materials (Basel)
December 2024
College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China.
The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
ACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
G-quadruplex (G4), an important secondary structure of nucleic acids, is polymorphic in structure. G4 monomers can associate with each other to form multimers, which show better application performance than monomers in some aspects. G4 dimers, the simplest and most widespread multimeric structures, are often used as a representative for studying multimers.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
The ferulic acid (FA) / monoglyceride (MG) mixture could act as a gelator to structure sunflower oil at the gelator concentration () ≥ 4 % and the FA/MG ratios () of 0:100, 25:75, 50:50 and 75:25. The rectangular FA and needle-shaped MG crystals in the oleogel interlock with each other to form a 3D network, restricting the flow of oil. The gel strength and rheological performance of the oleogel were positively correlated with and negatively correlated with storage temperature ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!