AI Article Synopsis

  • Protein glycosylation is a critical post-translational modification that involves adding carbohydrates to proteins, influencing processes like protein folding, cell recognition, and immune response.
  • The diversity of glycan structures is enhanced by the variety of natural sugars, enzymatic preferences, and stereochemical variations, making it important to understand this heterogeneity for studying biological functions.
  • A new python script automates the integration of glycoproteomic data from Byonic and MaxQuant, making it easier for researchers to analyze and compare glycan site occupancies and structures without extensive manual processing.

Article Abstract

Protein glycosylation is a post-translational modification involving the addition of carbohydrates to proteins and plays a crucial role in protein folding and various biological processes such as cell recognition, differentiation, and immune response. The vast array of natural sugars available allows the generation of plenty of unique glycan structures in proteins, adding complexity to the regulation and biological functions of glycans. The diversity is further increased by enzymatic site preferences and stereochemical conjugation, leading to an immense amount of different glycan structures. Understanding glycosylation heterogeneity is vital for unraveling the impact of glycans on different biological functions. Evaluating site occupancies and structural heterogeneity aids in comprehending glycan-related alterations in biological processes. Several software tools are available for large-scale glycoproteomics studies; however, integrating identification and quantitative data to assess heterogeneity complexity often requires extensive manual data processing. To address this challenge, we present a python script that automates the integration of Byonic and MaxQuant outputs for glycoproteomic data analysis. The script enables the calculation of site occupancy percentages by glycans and facilitates the comparison of glycan structures and site occupancies between two groups. This automated tool offers researchers a means to organize and interpret their high-throughput quantitative glycoproteomic data effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-50624-6_2DOI Listing

Publication Analysis

Top Keywords

glycan structures
12
biological processes
8
biological functions
8
site occupancies
8
glycoproteomic data
8
glycosort computational
4
computational solution
4
solution post-process
4
post-process quantitative
4
quantitative large-scale
4

Similar Publications

Site-Specific Molecular Engineering of Nanobody-Glucoside Conjugates for Enhanced Brain Tumor Targeting.

Bioconjug Chem

January 2025

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Nanobodies play an increasingly prominent role in cancer imaging and therapy. However, their efficacy is often constrained by inadequate tumor penetration and rapid clearance from the bloodstream, particularly in brain tumors due to the intractable blood-brain barrier (BBB). Glycosylation is a favorable strategy for modulating the biological functions of nanobodies, including permeability and pharmacokinetics, but it also leads to heterogeneous glycan structures, which affect the targeting ability, stability, and quality of nanobodies.

View Article and Find Full Text PDF

Design, Synthesis, and Antibacterial Activity of Novel Sulfone Derivatives Containing a 1,2,4-Triazolo[4,3-]Pyridine Moiety.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.

View Article and Find Full Text PDF

Ribitol and ribose treatments differentially affect metabolism of muscle tissue in FKRP mutant mice.

Sci Rep

January 2025

McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.

Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain.

View Article and Find Full Text PDF

SLC10A7 regulates O-GalNAc glycosylation and Ca homeostasis in the secretory pathway: insights into SLC10A7-CDG.

Cell Mol Life Sci

January 2025

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.

Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.

View Article and Find Full Text PDF

The presence of exogenous protein can delay starch digestion. However, systematic studies on the effects of protein on starch digestion under various heat treatments still need to be completed. In this study, the effects of exogenous protein and heat treatments on corn starch digestibility were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!