Pharmacokinetics of Panobinostat: Interspecies Difference in Metabolic Stability.

J Pharmacol Exp Ther

Departments of Pharmaceutics, Brain Barriers Research Center (Wenq. Zhang, J.-H.O., Wenj. Zhang, W.F.E.) and Medicinal Chemistry (C.C.A.), University of Minnesota, Minneapolis, Minnesota; and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)

Published: March 2024

AI Article Synopsis

  • Panobinostat is a potent pan-HDAC inhibitor being researched for its effectiveness in treating brain tumors, but studies show mixed results on its efficacy in the central nervous system (CNS).
  • The research aimed to understand how panobinostat is metabolized and distributed in different mouse strains to better assess its pharmacokinetics and CNS delivery.
  • Findings indicated that although panobinostat's plasma stability varied across mouse strains, these differences did not translate to consistent in vivo pharmacokinetic behavior, prompting further investigation into its interactions and metabolism.

Article Abstract

The deregulation of histone deacetylase (HDAC) expression is often seen in many cancers, and HDAC inhibitors have shown potency against a variety of cancer types. Panobinostat is a potent pan-HDAC inhibitor that has been tested in multiple studies for the treatment of brain tumors. There have been contrasting views surrounding its efficacy for the treatment of tumors in the central nervous system (CNS) following systemic administration when examined in different models or species. We conducted experiments using three different mouse strains or genotypes to have a more comprehensive understanding of the systemic as well as the CNS distributional kinetics of panobinostat. Our study found that panobinostat experienced rapid degradation in vitro in Friend leukemia virus strain B mouse matrices and a faster degradation rate was observed at 37°C compared with room temperature and 4°C, suggesting that the in vitro instability of panobinostat was due to enzymatic metabolism. Panobinostat also showed interstrain and interspecies differences in the in vitro plasma stability and was stable in human plasma. The objective of this study was to examine the in vitro metabolic stability of panobinostat in different matrices and assess the influence of that metabolic stability on the in vivo pharmacokinetics and CNS delivery of panobinostat. Importantly, the plasma stability in various mouse strains was not reflected in the in vivo systemic pharmacokinetic behavior of panobinostat. Several hypotheses arise from this finding, including: the binding of panobinostat to red blood cells, the existence of competing endogenous compounds to enzyme(s), the distribution into tissues with a lower level of enzymatic activity or the metabolism occurring in the plasma is a small fraction of the total metabolism in vivo. SIGNIFICANCE STATEMENT: Panobinostat showed different in vitro degradation in plasma from different mouse strains and genotypes. However, despite the differences surrounding in vitro plasma stability, panobinostat showed similar in vivo pharmacokinetic behavior in different mouse models. This suggests that the interstrain difference in enzymatic activity did not affect the in vivo pharmacokinetic behavior of panobinostat and its central nervous system distribution in mice. This lack of translation between in vitro metabolism assays and in vivo disposition can confound drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949161PMC
http://dx.doi.org/10.1124/jpet.123.002051DOI Listing

Publication Analysis

Top Keywords

metabolic stability
12
panobinostat
12
mouse strains
12
plasma stability
12
pharmacokinetic behavior
12
central nervous
8
nervous system
8
strains genotypes
8
vitro plasma
8
stability panobinostat
8

Similar Publications

Primary ciliary dyskinesia is a rare monogenic syndrome that is associated with chronic respiratory disease, infertility, and laterality defects. Although more than 50 genes causative of primary ciliary dyskinesia have been identified, variants in the genes encoding coiled-coil domain-containing 39 (CCDC39) and CCDC40 in particular cause severe disease that is not explained by loss of ciliary motility alone. Here, we sought to understand the consequences of these variants on cellular functions beyond impaired motility.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

Quantitative Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Stabilization in a Neural Model of Alzheimer's Disease (AD).

J Vis Exp

January 2025

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;

A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!