Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897308PMC
http://dx.doi.org/10.1038/s41467-024-45466-xDOI Listing

Publication Analysis

Top Keywords

cell death
12
inflammatory cell
8
innate immune
8
release inflammatory
8
panoptosis
5
ninj1 mediates
4
inflammatory
4
mediates inflammatory
4
cell
4
death panoptosis
4

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.

Oncogene

January 2025

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.

Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!