Characterization of sucrose nonfermenting-1-related protein kinase 2 (SnRK2) gene family in Haynaldia villosa demonstrated SnRK2.9-V enhances drought and salt stress tolerance of common wheat.

BMC Genomics

National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.

Published: February 2024

Background: The sucrose nonfermenting-1-related protein kinase 2 (SnRK2) plays a crucial role in responses to diverse biotic/abiotic stresses. Currently, there are reports on these genes in Haynaldia villosa, a diploid wild relative of wheat.

Results: To understand the evolution of SnRK2-V family genes and their roles in various stress conditions, we performed genome-wide identification of the SnRK2-V gene family in H. villosa. Ten SnRK2-V genes were identified and characterized for their structures, functions and spatial expressions. Analysis of gene exon/intron structure further revealed the presence of evolutionary paths and replication events of SnRK2-V gene family in the H. villosa. In addition, the features of gene structure, the chromosomal location, subcellular localization of the gene family were investigated and the phylogenetic relationship were determined using computational approaches. Analysis of cis-regulatory elements of SnRK2-V gene members revealed their close correlation with different phytohormone signals. The expression profiling revealed that ten SnRK2-V genes expressed at least one tissue (leave, stem, root, or grain), or in response to at least one of the biotic (stripe rust or powdery mildew) or abiotic (drought or salt) stresses. Moreover, SnRK2.9-V was up-regulated in H. villosa under the drought and salt stress and overexpressing of SnRK2.9-V in wheat enhanced drought and salt tolerances via enhancing the genes expression of antioxidant enzymes, revealing a potential value of SnRK2.9-V in wheat improvement for salt tolerance.

Conclusion: Our present study provides a basic genome-wide overview of SnRK2-V genes in H. villosa and demonstrates the potential use of SnRK2.9-V in enhancing the drought and salt tolerances in common wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895793PMC
http://dx.doi.org/10.1186/s12864-024-10114-7DOI Listing

Publication Analysis

Top Keywords

drought salt
20
gene family
16
snrk2-v gene
12
snrk2-v genes
12
sucrose nonfermenting-1-related
8
nonfermenting-1-related protein
8
protein kinase
8
kinase snrk2
8
haynaldia villosa
8
salt stress
8

Similar Publications

The TIFY Transcription Factor ZmJAZ13 Enhances Plant Tolerance to Drought and Salt Stress by Interacting with ZmbHLH161 and ZmA0A1D6GLB9.

Plant Sci

January 2025

Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

The JAZ protein family, serving as a key negative regulator in the jasmonic acid signaling pathway, interacts with transcription factors to play an essential role in plant growth, development, and stress responses. However, minimal research has focused on the role of JAZ transcription factors in regulating the growth, development, and stress responses of maize. In this study, we cloned the JAZ gene ZmJAZ13 from maize (Zea mays L.

View Article and Find Full Text PDF

Corrigendum to "GmDof41 regulated by the DREB1-type protein improves drought and salt tolerance by regulating the DREB2-type protein in soybean" [Int. J. Biol. Macromol, 230 (2023) 123235].

Int J Biol Macromol

January 2025

National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; College of Agronomy, Jilin Agricultural University, Changchun 130118, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China. Electronic address:

View Article and Find Full Text PDF

Arabidopsis glycosyltransferase UGT86A1 promotes plant adaptation to salt and drought stresses.

Physiol Plant

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.

UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.

View Article and Find Full Text PDF

Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses.

View Article and Find Full Text PDF

Amino acids in wine grapes function as precursors for various secondary metabolites and play a vital role in plant growth, development, and stress resistance. The amino acid/auxin permease () genes encode a large family of transporters; however, the identification and function of the gene family in grapes remain limited. Consequently, we conducted a comprehensive bioinformatics analysis of all genes in grapes, encompassing genome sequence analysis, conserved protein domain identification, chromosomal localization, phylogenetic relationship analysis, and gene expression profiling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!