The Dengue virus (DENV) is the most significant arthropod-borne viral pathogen in humans with 400 million infections annually. DENV comprises four distinct serotypes (DENV-1 to -4) which complicates vaccine development. Any of the four serotypes can cause clinical illness but with distinctive infection dynamics. Variations in sequences identified within the four genomes induce structural differences in crucial RNA motifs that were suggested to be correlated to the degree of pathogenicity among DENV-1 to -4. In particular, the RNA Stem-loop A (SLA) at the 5'-end of the genome, acts as a key regulator of the viral replication cycle by interacting with the viral NS5 polymerase to initiate the minus-strand viral RNA synthesis and later to methylate and cap the synthesized RNA. The molecular details of this interaction remain not fully described. Here, we report the solution secondary structures of SLA from DENV-1 to -4. Our results highlight that the four SLA exhibit structural and dynamic differences. Secondly, to determine whether SLA RNA contains serotype-specific determinants for the recognition by the viral NS5 protein, we investigated interactions between SLA from DENV -1 to -4 and DENV2 NS5 using combined biophysical approaches. Our results show that NS5 from DENV2 is able to bind SLA from other serotypes, but that other viral or host factors may be necessary to stabilize the complex and promote the catalytically active state of the NS5. By contrast, we show that a serotype-specific binding is driven by specific interactions involving conformational changes within the SLA RNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2024.02.005 | DOI Listing |
bioRxiv
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA.
The dengue virus (DENV) NS5 protein plays a central role in dengue viral RNA synthesis which makes it an attractive target for antiviral drug development. DENV NS5 is known to interact with the stem-loop A (SLA) promoter at the 5'-untranslated region (5'-UTR) of the viral genome as a molecular recognition signature for the initiation of negative strand synthesis at the 3' end of the viral genome. However, the conformational dynamics involved in these interactions are yet to be fully elucidated.
View Article and Find Full Text PDFBrain Pathol
November 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
Alzheimer's disease (AD) is a neurodegenerative disorder with a higher risk incidence in females than in males, and there are also differences in AD pathophysiology between sexes. The role of sex in the pathogenesis of AD may be crucial, yet the cellular and molecular basis remains unclear. Here, we performed a comprehensive analysis using four public transcriptome datasets of AD patients and age-matched control individuals in prefrontal cortex, including bulk transcriptome (295 females and 402 males) and single-nucleus RNA sequencing (snRNA-seq) data (224 females and 219 males).
View Article and Find Full Text PDFFEBS Lett
September 2024
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"- Consiglio Nazionale delle Ricerche, Pavia, Italy.
J Med Virol
September 2024
Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Republic of Korea.
Front Immunol
June 2024
Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.
Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shβ2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!