Background: Diabetes is an independent risk factor for mesh complications in women undergoing mesh-augmented surgical repairs of stress urinary incontinence and/or pelvic organ prolapse. The underlying mechanism remains unclear.
Objective: This study aimed to define the diabetes-associated alterations in the host inflammatory response to mesh and correlate them with perioperative glucose management.
Study Design: Deidentified demographics and medical records of patients who underwent mesh removal and participated in a mesh biorepository study were reviewed (n=200). In patients with diagnosed diabetes (n=25), blood glucose management before initial mesh implantation and before and after mesh removal was assessed by blood glucose and hemoglobin A1c levels. Age- and body mass index-matched tissue samples excised from patients with and without diabetes were examined. Transcriptomic profiles of immune cell markers, immune mediators, key inflammatory regulators, cell senescence, and epigenetic enzymes were determined by multiplex transcriptomic assays (NanoString). Ratios of apoptotic cells to CD68+ macrophages were examined with immunofluorescence. Protein profiles of 12 molecules involved in apoptotic cell clearance were examined with a multiplex protein assay (Luminex).
Results: Demographic and clinical characteristics, including duration between mesh implantation and removal, reason for removal, and type of mesh, etc., were comparable between patients with and without diabetes, except for 11.6% higher body mass index in the former (P=.005). In patients with diabetes, suboptimal management of blood glucose following mesh implantation was observed, with 59% of the patients having loosely or poorly controlled glucose before and after the mesh removal. Ongoing chronic inflammatory response was observed in the excised mesh-tissue complexes in both groups, whereas markers for M2 macrophages (Mrc1 [mannose receptor C-type 1]) and helper T cells (Cd4 [CD4 molecule]) were increasingly expressed in the diabetic vs nondiabetic group (P=.023 and .047, respectively). Furthermore, the gene expressions of proinflammatory Ccl24 (C-C motif chemokine ligand 24) and Ccl13 (C-C motif chemokine ligand 13) were upregulated by 1.5- and 1.8-fold (P=.035 and .027, respectively), whereas that of Il1a (interleukin 1 alpha) was paradoxically downregulated by 2.2-fold (P=.037) in the diabetic vs nondiabetic group. Interestingly, strong positive correlations were found between the expression of Ccl13, Setdb2 (SET domain bifurcated histone lysine methyltransferase 2), and M2 macrophage markers, and between the expression of Il1a, Fosl1 (activator protein-1 transcription factor subunit), and dendritic cell markers, suggesting the involvement of macrophages and dendritic cells in the diabetes-dysregulated proinflammatory response. Supportively, apoptotic cell clearance, which is an important function of macrophages, appeared to be impaired in the diabetic group, with a significantly increased protein level of CALR (calreticulin), an "eat-me" signal on the surface of apoptotic cells (P=.031), along with an increase of AXL (AXL receptor tyrosine kinase) (P=.030), which mediates apoptotic cell clearance.
Conclusion: Diabetes was associated with altered long-term inflammatory response in complicated mesh implantation, particularly involving innate immune cell dysfunction. Suboptimal blood glycemic control following mesh implantation may contribute to this immune dysregulation, necessitating further mechanistic studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194151 | PMC |
http://dx.doi.org/10.1016/j.ajog.2024.02.282 | DOI Listing |
Surg Endosc
January 2025
Division of Minimally Invasive and Bariatric Surgery, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA.
Background: Defect closure with mesh suture is a novel technique for hernia repair. Originally described as the construction of lightweight macroporous polypropylene mesh strips as a suture material, it is now available as an FDA-approved product. Mesh suture better distributes tensile forces and reduces fascial tearing compared to traditional suture but requires less implanted material and tissue dissection compared to planar mesh.
View Article and Find Full Text PDFPacing Clin Electrophysiol
January 2025
Section of Laboratory for Animal Experiments, Institute of Medical Science, Medical Research Support Center, Nihon University, School of Medicine, Tokyo, Japan.
Background: Neither the actual in vivo tissue temperatures reached with a novel contact force sensing catheter with a mesh-shaped irrigation tip (TactiFlex SE, Abbott) nor the safety profile has been elucidated.
Methods: In a porcine model (n = 8), thermocouples were implanted epicardially in the superior vena cava, right pulmonary vein, and esophagus close to the inferior vena cava following a right thoracotomy. After chest closure, endocardial ablation was conducted near the thermocouples under fluoroscopic guidance.
Obstet Gynecol Int
January 2025
Department of Gynecology and Obstetrics, Hotel Dieu de France Hospital, Beirut, Lebanon.
Pelvic organ prolapse (POP) is a benign condition that can adversely affect women's quality of life. Mesh sacrocolpopexy is an effective surgical treatment for POP, but is considered a complex and risky surgery for obese and elderly women. The objective of this study was to assess the impact of age and obesity on the outcomes of minimally invasive sacrocolpopexy.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Technology Ropar, Biomedical Engineering, Department of Biomedical Engineering, IIT Ropar, Main Campus, India, 140001, Ropar, INDIA.
Hernia is characterized by the protrusion of organs or tissue through weakened areas in the abdominal cavity wall. A common treatment for hernia involves the implantation of a mesh which promotes the growth of new tissue around or within the implanted material in the damaged area. The mesh is typically made from synthetic materials like polypropylene.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Clinical Specialistic and Dental Sciences, Polytechnic University of Marche, Via Tronto, 10/A, 60126 Ancona, Italy.
Alveolar ridge resorption following tooth loss poses a significant challenge for successful dental implant placement. In cases of severe atrophy, bone augmentation is required to restore sufficient bone volume. This technical note outlines a detailed, stepwise surgical protocol for horizontal and vertical alveolar ridge augmentation using customized titanium mesh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!