Changes in arterial myocyte excitability induced by subarachnoid hemorrhage in a rat model.

Vascul Pharmacol

Instituto de Biomedicina de Sevilla, IBIS/ Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, Sevilla, Spain; Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain. Electronic address:

Published: June 2024

Aneurismal subarachnoid hemorrhage (aSAH) is a neurovascular disease produced by the rupture of the cerebral arteries and the extravasation of blood to the subarachnoid space and is accompanied by severe comorbidities. Secondarily associated vasospasm is one of the main side effects after hydrocephalus and possible rebleeding. Here, we analyze the alterations in function in the arteries of a rat model of SAH. For this, autologous blood was injected into the cisterna magna. We performed electrophysiological, microfluorimetric, and molecular biology experiments at different times after SAH to determine the functional and molecular changes induced by the hemorrhage. Our results confirmed that in SAH animals, arterial myocytes were depolarized on days 5 and 7, had higher [Ca] on baseline, peaks and plateaus, and were more excitable at low levels of depolarization on day 7, than in the control and sham animals. Microarray analysis showed that, on day 7, the sets of genes related to voltage-dependent Ca channels and K dynamics in SAH animals decreased, while the voltage-independent Ca dynamics genes were over-represented. In conclusion, after SAH, several mechanisms involved in arterial reactivity were altered in our animal model, suggesting that there is no unique cause of vasospasm and alterations in several signaling pathways are involved in its development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2024.107287DOI Listing

Publication Analysis

Top Keywords

subarachnoid hemorrhage
8
rat model
8
sah animals
8
sah
5
changes arterial
4
arterial myocyte
4
myocyte excitability
4
excitability induced
4
induced subarachnoid
4
hemorrhage rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!