The eradication of multifactorial diseases, such as cancer, requires the design of drug candidates that attack multiple targets that contribute to the progression and proliferation of such diseases. Here, 1,5-diarylpyrazole derivatives bearing vanillin or sulfanilamide are developed as potential dual inhibitors of epidermal growth factor receptor (EGFR)/c-Jun N-terminal kinase 2 (JNK-2) for possible anticancer activity. These derivatives inhibited the growths of DLD-1, HeLa, K-562, SUIT-2 and HepG2 cancer cell lines, with minimum concentration required to inhibit half of the cellular growth (IC) values of 2.7-63 μM. The tests confirmed that 5b and 5d were potent JNK-2 inhibitors, with IC of 2.0 and 0.9 μM, respectively, whereas 6 h selectively inhibited EGFR protein kinase (EGFR-PK) (IC = 1.7 μM). Notably, 6c inhibited both kinases, with IC values of 2.7 and 3.0 μM against EGFR-PK and JNK-2, respectively, offering a reference for designing mutual inhibitors of EGFR/JNK-2. The docking studies revealed the ability of the pyrazole ring to bind to the hinge region of the ATP binding site, thereby supporting the experimental inhibitory results. Furthermore, the developed compounds could induce apoptosis and induce cell cycle arrest at different cell phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2024.129673 | DOI Listing |
Anal Bioanal Chem
December 2024
College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.
Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.
Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.
Bioorg Med Chem Lett
December 2024
Pinotbio, Inc Suwon, Gyeonggi-do 16506, South Korea.
FL118, a camptothecin derivative with dual mechanisms of action through topoisomerase I inhibition and proteasome-mediated degradation of anti-apoptotic proteins exhibits potent anti-tumor activity while remaining resistant to drug efflux transporters. This work describes the targeted delivery of FL118 to tumors via antibody-drug conjugates (ADCs) using the pH-sensitive CL2A linker. ADCs targeting Trop2, HER2, and EGFR exhibited potent in vitro cytotoxicity, with IC values as low as 0.
View Article and Find Full Text PDFBioorg Chem
December 2024
The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
The down-regulation of p21 after long-term CDK4/6 inhibition represents a key mechanism causing resistance to CDK4/6 inhibitors in some tumor cells, while the HDAC inhibitor could upregulate the level of p21. Herein, a series of novel CDK4/6 and HDAC dual-targeting inhibitors based on the moiety of palbociclib were designed and synthesized. Among them, compound N14 potently inhibited CDK4/6 and HDAC1/6 at nanomolar levels and induced cell apoptosis and G/G phase arrest through HDAC-p21-CDK signaling pathway in HuH-7 cell line.
View Article and Find Full Text PDFJ Med Chem
December 2024
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
Inhibiting the activity of immune checkpoint proteins to reignite the antitumor activity of immune cells has emerged as a pivotal strategy. PD-L1 and VISTA, as critical proteins governing immune regulation, are concurrently upregulated under conditions such as hypoxia. Through a rational drug design process, , a dual-target inhibitor for PD-L1 and VISTA is identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!