This study introduced two deep eutectic solvents, ChCl/oxalic acid (CO) and ChCl/ethylene glycol (CE), into a 34-day co-composting process of distillery sludge and distiller's grains waste to address challenges related to NH emissions. The addition of DES increased dissolved organic carbon by 68% to 92%, offering more utilizable carbon for microorganisms. SYTO9/PI staining and enzyme activity tests showed the CE group had higher bacterial activity and metabolic levels during the thermophilic phase than the control. Bacterial community analysis revealed that early dominance of Lactobacillus and Lysinibacillus in CE accelerated the onset of the thermophilic phase, reduced pile pH, and significantly decreased urease production by reducing Ureibacillus. Consequently, CE treatment substantially dropped NH emissions by 73% and nitrogen loss by 54%. Besides, CE fostered a more abundant functional microbial community during the cooling and maturation phases, enhancing deep degradation and humification of organic matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.130491 | DOI Listing |
Sci Total Environ
December 2024
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Microbial community coalescence is a ubiquitous ecological process in various ecosystems. However, limited research has addressed the effects of the coalescence on microbial ecological processes and network structure, particularly in the context of sewage discharge during high amplitude hydrological periods. Employing 16S rRNA sequencing and species source tracking analysis, we investigated the coalescence pattern of bacterioplankton in the Chishui river and sewage across various hydrological periods.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Chemistry, University of Trnava, Trnava, Slovakia.
Mycotoxin Res
November 2024
Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan.
Sci Total Environ
May 2024
Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia. Electronic address:
This study addresses the pressing environmental concerns associated with the rapidly growing distillery industry, which is a significant contributor to wastewater generation. By focusing on the treatment of distillery wastewater using anaerobic digestion, this research explores the potential to convert organic materials into biofuels (methane). Moreover, the study aims to recover both methane and phosphorus from distillery wastewater in a single anaerobic reactor, which represents a novel and unexplored approach.
View Article and Find Full Text PDFBioresour Technol
April 2024
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China. Electronic address:
This study introduced two deep eutectic solvents, ChCl/oxalic acid (CO) and ChCl/ethylene glycol (CE), into a 34-day co-composting process of distillery sludge and distiller's grains waste to address challenges related to NH emissions. The addition of DES increased dissolved organic carbon by 68% to 92%, offering more utilizable carbon for microorganisms. SYTO9/PI staining and enzyme activity tests showed the CE group had higher bacterial activity and metabolic levels during the thermophilic phase than the control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!