Understanding the synergism between the metal site and acid site is of great significance in boosting the efficiency of bi-functional catalysts in many heterogeneous reactions, particularly in biomass upgrading. Herein, a "confined auto-redox" strategy is reported to fix CeO-anchored Pt atoms on the inner wall of a ZSM-5 cage, achieving the target of finely controlling the placements of the two active sites. Compared with the conventional surface-supported counterpart, the encapsulated Pt/CeO@ZSM-5 catalyst possesses remarkably-improved activity and selectivity, which can convert >99% furfural into cyclopentanone with 97.2% selectivity in 6 h at 160 °C. Besides the excellent catalytic performance, the ordered metal-acid distribution also makes such kind of catalyst an ideal research subject for metal-acid interactions. The following mechanization investigation reveals that the enhancement is strongly related to the unique encapsulation structure, which promotes the migration of the reactants over different active sites, thereby contributing to the tandem reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313596DOI Listing

Publication Analysis

Top Keywords

metal-acid interactions
8
active sites
8
strengthening metal-acid
4
interactions ceo
4
ceo regulators
4
regulators precisely
4
precisely placing
4
placing species
4
species zsm-5
4
zsm-5 furfural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!