High-speed atomic force microscopy (HS-AFM) is an indispensable technique in the field of biology owing to its imaging capability with high spatiotemporal resolution. Furthermore, recent developments established tip-scan stand-alone HS-AFM combined with an optical microscope, drastically improving its versatility. It has considerable potential to contribute to not only biology but also various research fields. A great candidate is a photoactive material, such as an azo-polymer, which is important for optical applications because of its unique nanoscale motion under light irradiation. Here, we demonstrate the observation of nanoscale azo-polymer motion by combining tip-scan HS-AFM with an optical system, allowing HS-AFM observations precisely aligned with a focused laser position. We observed the dynamic evolution of unique morphologies in azo-polymer films. Moreover, real-time topographic line profile analyses facilitated precise investigations of the morphological changes. This important demonstration would pave the way for the application of HS-AFM in a wide range of research fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c04877 | DOI Listing |
Nano Lett
March 2024
Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
High-speed atomic force microscopy (HS-AFM) is an indispensable technique in the field of biology owing to its imaging capability with high spatiotemporal resolution. Furthermore, recent developments established tip-scan stand-alone HS-AFM combined with an optical microscope, drastically improving its versatility. It has considerable potential to contribute to not only biology but also various research fields.
View Article and Find Full Text PDFRSC Adv
October 2021
Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University Beijing 100084 P. R. China
Photoinduced surface-relief-gratings (SRGs) on azo polymer and azo molecular glass films, caused by - isomerization of azo chromophores, have attracted wide interest for their intriguing nature and many possible applications in recent years. Understanding the mechanical properties of SRGs at the nanoscale is critically important for elucidating their formation mechanism and exploring their applications. In this work, a representative azo polymer (BP-AZ-CA) and a typical azo molecular glass (IAC-4) were comparatively studied for the first time concerning their properties related to SRG formation through a variety of methods.
View Article and Find Full Text PDFNanoscale polymer movement is induced by a tightly focused laser beam in an azo-polymer film just at the diffraction limit of light. The deformation pattern that is produced by photoisomerization of the azo dye is strongly dependent on the incident laser polarization and the longitudinal focus position of the laser beam along the optical axis. The anisotropic photo-fluidity of the polymer film and the optical gradient force played important roles in the light induced polymer movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!