Deoxynivalenol (DON) is a common environmental pollutant that poses a serious health risk to humans worldwide. This study was aim to explore whether gut microbiota is involved in DON-induced intestinal toxicity as well as to reveal effect of probiotics derived from gut microbiota in protecting intestinal barrier and to elucidate mechanism. We found that DON caused disturbed gut microbiota, particularly Lactobacillus murinus (L. murinus) deficiency. DON enhanced M1 macrophage polarization and decreased tight junction protein expression. Microbiota transplantation experiments showed that transfer of DON-disrupted microbiota to healthy mice resulted in delivery of DON-induced intestinal toxicity. Besides, DON lost its damaging effect on macrophage and intestinal barrier in antibiotic-treated mice. Further intervention experiments revealed that L. murinus induce macrophage conversion from M1 to M2 phenotype through secreted extracellular vesicles (EVs) to alleviate DON-induced intestinal barrier disruption. Mechanistically, EVs activate TLR2 to promote M2 macrophage polarization and release IL-10, which in turn enhances intestinal barrier function. Upon successful translation of its efficacy into clinical practice, EVs created from L. murinus could be a novel possible treatment strategy for DON-induced gut disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108525DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
20
gut microbiota
12
don-induced intestinal
12
extracellular vesicles
8
lactobacillus murinus
8
barrier disruption
8
intestinal toxicity
8
macrophage polarization
8
intestinal
7
murinus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!