Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In research focused on protein-protein interaction (PPI) inhibitors, the optimization process to achieve both high inhibitory activity and favorable physicochemical properties remains challenging. Our previous study reported the discovery of novel and bioavailable Keap1-Nrf2 PPI inhibitor which exhibited moderate in vivo activity in rats. In this work, we present our subsequent efforts to optimize this compound. Two distinct approaches were employed, targeting high energy water molecules and Ser602 as "hot spots" from the anchor with good aqueous solubility, metabolic stability, and membrane permeability. Through ligand efficiency (LE)-guided exploration, we identified two novel inhibitors and with good pharmacokinetics (PK) profiles and more potent in vivo activities, which appear to be promising chemical probes among the existing inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.3c02171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!