Objective: This study seeks to examine the impact of anterior and posterior vault distraction osteogenesis (A-PVDO) in conjunction with 3D-printed positioning and shaping templates for the management of Apert syndrome.
Methods: From January 2018 to February 2022, a retrospective analysis was conducted on 6 cases of Apert syndrome employing fronto-orbital 3D-printed positioning and molding templates. The cranium underwent surgical modification in accordance with the template's configuration and was affixed with absorbable plates. Subsequently, distraction devices were applied, encompassing both anterior and posterior craniotomies. The evaluation encompassed clinical outcomes, complications (including cerebrospinal fluid leakage and infection), safety, and the feasibility of the distraction osteogenesis procedure.
Results: Six patients diagnosed with Apert syndrome underwent treatment involving the integration of fronto-orbital 3D-printed positioning and shaping templates in conjunction with anterior and posterior cranial distraction osteoplasty. Follow-up durations ranged from 18 to 32 months (average: 22 mo). No instances of fronto-orbital retraction, cerebrospinal fluid leakage, or intracranial infection were noted during the follow-up period. The sole reported complication entailed an infection at the extension rod site in 1 case. All patients conveyed satisfaction with the treatment outcomes.
Conclusions: The application of 3D-printed positioning and shaping templates in tandem with anterior and posterior cranial distraction osteogenesis demonstrates efficacy in addressing Apert syndrome. Notably, significant enhancements in head shape and orbit were observed, and the incidence of postoperative complications such as cerebrospinal fluid leakage and infection remained minimal. Moreover, long-term follow-up affirmed stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0000000000010070 | DOI Listing |
Eur J Orthod
December 2024
Department of General Surgery and Medical-Surgical Specialties, Section of Orthodontics, University of Catania, Policlinico Universitario 'Gaspare Rodolico-San Marco', Via Santa Sofia 78, 95123, Catania, Italy.
Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFJ Vasc Bras
December 2024
Universidade Positivo - UP, Curitiba, PR, Brasil.
The lower limb is vascularized by the femoral artery, which continues as the popliteal artery. After the distal margin of the popliteus muscle, the popliteal artery divides into the anterior and posterior tibial arteries. Anatomical variations in the bifurcation of the popliteal artery are frequent.
View Article and Find Full Text PDFLens tension is essential for accommodative vision but remains challenging to measure with precision. Here, we present an optical coherence elastography (OCE) technique that quantifies both the tension and elastic modulus of lens tissue and capsule. This method derives mechanical parameters from surface wave dispersion across a critical frequency range of 1-30 kHz.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is an established intervention for treatment-resistant depression (TRD), yet the underlying therapeutic mechanisms remain not fully understood. This study employs an integrative approach that combines TMS with concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), aimed at assessing the acute/immediate effects of TMS on brain network dynamics and their correlation with clinical outcomes. Our study demonstrates that TMS acutely modulates connectivity within vital brain circuits, particularly the cognitive control and default mode networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!