Herein, we present the capacity of three different molecular docking programs (AutoDock, AutoDock Vina, and PLANTS) to identify and reproduce the binding modes of ligands present in 247 covalent and 169 noncovalent complex crystal structures of the severe acute respiratory syndrome coronavirus 2 main protease (M). The compromise in docking power is evaluated with respect to their ability to generate poses similar to the crystal structure binding mode (heavy atoms' root-mean-square deviation < 2 Å) and their ability to recognize the native binding mode with an included compensation for the scoring function error. Noncovalently bound inhibitors are best modeled by AutoDock Vina (90.6% success rate in the active site), while the most relevant results for covalently bound inhibitors are produced by PLANTS (93.0%). AutoDock shows acceptable performance for both types of ligands, 81.1 and 76.4% for noncovalent and covalent complexes, respectively. All three programs manifest worse performance when reproducing surface-bound ligands. Comparison with other works illustrates the importance of crystal structure processing (12% of noncovalent and 26% of covalent ligands had to be manually corrected), proper sampling protocol settings, and inclusion of root-mean-square deviation (RMSD)/scoring function error compensations in crystal structure pose identification. Results are analyzed with respect to a clustering scheme of the noncovalently bound ligands and the chemical reaction type of the covalent ligand bound to the Cys145 residue. A comparison of screening power based on the docking scores of noncovalent ligands from the crystal structures with a "Directory of Useful Decoys, Enhanced" set of known decoys (6562 compounds) and ZINC15 in vivo subset (60,394 compounds) is provided. Ligand and protein input files are provided for future benchmarking purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c01552 | DOI Listing |
J Nat Prod
January 2025
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.
View Article and Find Full Text PDFInorg Chem
January 2025
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
Metal-organic frameworks have received extensive development in the past three decades, which are generally constructed via the reaction between inorganic building units and commercially available or presynthesized organic linkers. However, the presynthesis of organic linkers is usually time-consuming and unsustainable due to multiple-step separation and purification. Therefore, methodology development of a new strategy is fundamentally important for the construction and further exploration of the applications of MOFs.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.
View Article and Find Full Text PDFSmall
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!