Proper preclinical models for the research of colorectal cancer (CRC) and CRC liver metastases (CLM) are a clear and unmet need. Patient-derived organoids have recently emerged as a robust preclinical model, but are not available to all scientific researchers. Here, we present paired 3D organoid cell lines of CWH22 (CRC-derived) and CLM22 (CLM-derived) with sound background information and the short tandem repeats are identical to those of the normal tissue. Morphological and immunohistochemical staining, along with whole-exome sequencing (WES), confirmed that the organoids exhibited the same differentiation, molecular expression, and mutation status as the corresponding tumor tissue. Both organoids possessed mutated // genes and wild-type and ; stably secreted the tumor markers CEA and CA19-9, and possessed sound proliferation rates , as well as subcutaneous tumorigenicity and liver metastatic abilities . IC assays confirmed that both cell lines were sensitive to 5-fluorouracil, oxaliplatin, SN-38, and sotorasib. WES and karyotype analyses revealed the genomic instability status as chromosome instability. The corresponding adherent cultured CWH22-2D/CLM22-2D cells were established and compared with commonly used CRC cell lines from the ATCC. Both organoids are publicly available to all researchers and will be useful tools for specific human CRC/CLM studies both and

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968669PMC
http://dx.doi.org/10.18632/aging.205595DOI Listing

Publication Analysis

Top Keywords

cell lines
16
organoid cell
8
pair primary
4
primary colorectal
4
colorectal cancer-derived
4
cancer-derived corresponding
4
corresponding synchronous
4
synchronous liver
4
liver metastasis-derived
4
metastasis-derived organoid
4

Similar Publications

Importance: The current standard-of-care salvage therapy in relapsed/refractory classic Hodgkin lymphoma (cHL) includes consolidation high-dose chemotherapy (HDCT)/autologous stem cell transplant (aSCT).

Objective: To investigate whether presalvage risk factors and fludeoxyglucose-18 (FDG) positron emission tomography (PET) response to reinduction chemotherapy can guide escalation or de-escalation between HDCT/aSCT or transplant-free consolidation with radiotherapy to minimize toxic effects while maintaining high cure rates.

Design, Setting, And Participants: EuroNet-PHL-R1 was a nonrandomized clinical trial that enrolled patients younger than 18 years with first relapsed/refractory cHL across 68 sites in 13 countries in Europe between January 2007 and January 2013.

View Article and Find Full Text PDF

The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells.

View Article and Find Full Text PDF

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

Ciliates often form symbiotic associations with other microorganisms, both prokaryotic and eukaryotic. We are now starting to rediscover the symbiotic systems recorded before molecular analysis became available. Here, we provide a morphological and molecular characterization of a symbiotic association between the ciliate Paramecium tritobursaria and the yeast Rhodotorula mucilaginosa (syn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!