Background: The therapeutic challenges posed by nontuberculous mycobacterial pulmonary disease (NTM-PD) contribute to an unmet medical need. In this study, we aimed to investigate NTM-PD-specific metabolic pathways using serum metabolomics to understand disease pathogenesis.
Methods: Mass spectrometry-based untargeted metabolomic profiling of serum from patients with NTM-PD (n = 50), patients with bronchiectasis (n = 50), and healthy controls (n = 60) was performed. Selected metabolites were validated by an independent cohort and subjected to pathway analysis and classification modeling.
Results: Leucine, tyrosine, inosine, proline, 5-oxoproline, and hypoxanthine levels increased in the NTM-PD group compared with the healthy control group. Furthermore, levels of antioxidant metabolites (ferulic acid, α-lipoic acid, biotin, and 2,8-phenazinediamine) decreased in patients with NTM-PD. These changes were associated with arginine- and proline-related metabolism, leading to generation of reactive oxygen species. Interestingly, the observed metabolic changes in the NTM-PD group overlapped with those in the bronchiectasis group.
Conclusions: In NTM-PD, 11 metabolites linked to increased oxidative stress were significantly altered from those in healthy controls. Our findings enhance a comprehensive understanding of NTM-PD pathogenesis and provide insights for novel treatment approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/infdis/jiae100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!