Children born very low gestational age (VLGA, 29-32 weeks gestational age [GA]) display slower processing speed and altered hypothalamic pituitary adrenal (HPA) axis function, with greater effects in those born extremely low gestational age (ELGA; 24-28 weeks GA). We investigated trajectories of HPA axis activity as indexed by cortisol output and patterns across cognitive assessment at ages 1.5, 3 and 4.5 years, comparing children born ELGA and VLGA and associations with 4.5-year processing speed. In a prospective longitudinal cohort study, infants born very preterm (<33 weeks gestation) returned for developmental assessment at ages 1.5, 3, and 4.5 years. At each age, children completed standardized cognitive testing and saliva samples collected before (Pretest), during (During) and after (End) challenging cognitive tasks were assayed for cortisol. For the total group ( = 188), cortisol area under the curve with respect to ground (AUCg) decreased, while cortisol reactivity to challenge (Pre-test to During) increased from 1.5 to 3 years, remaining stable to 4.5 years. This longitudinal pattern was related to higher Processing Speed (WPPSI-IV) scores at 4.5 years. Children born ELGA displayed higher AUCg than VLGA, particularly at age 3, driven by higher Pre-test cortisol levels. Overall, relative to those born VLGA, children born ELGA displayed greater cortisol responsivity to cognitive challenge. A higher setpoint of cortisol levels at age 3-years in children born ELGA may reflect altered HPA axis regulation more broadly and may contribute to difficulties with information processing in this population, critical for academic and social success.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09297049.2024.2314958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!