In this study, the mechanisms by which sanxan protected the quality of salt-free frozen-cooked noodles (SFFCNs) were investigated, with a focus on the composition and structural properties of gluten. The results showed that sanxan facilitated the formation of glutenin macropolymer and maintained the stabilization of glutenin subunits in freeze-thaw cycles (FTs). In terms of protein structure, sanxan weakened the disruption of secondary structure caused by FTs and increased the proportion of --gauche (g-g-g) conformations in the disulfide (S-S) bonds bridge conformation. Simultaneously, sanxan reduced the exposure degree of tryptophan (Trp) and tyrosine (Tyr) residues on the protein surface. Moreover, the intermolecular interaction forces indicated that sanxan inhibited S-S bonds breakage and enhanced the intermolecular crosslinking of gluten through ion interactions, which was crucial for improving the stability of gluten. This study provides a more comprehensive theoretical basis for the role of sanxan in improving the quality of SFFCNs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884818 | PMC |
http://dx.doi.org/10.1016/j.fochx.2024.101229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!