Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885005 | PMC |
http://dx.doi.org/10.3892/ol.2024.14285 | DOI Listing |
Inflamm Res
January 2025
Queen's Belfast University, Belfast, Northern Ireland, UK.
Background: Giant cell arteritis (GCA) is a prevalent artery and is strongly correlated with age. The role of CD4+ Memory T cells in giant cell arteritis has not been elucidated.
Method: Through single-cell analysis, we focused on the CD4+ Memory T cells in giant cell arteritis.
Glia
January 2025
Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.
Human genetics studies lent firm evidence that microglia are key to Alzheimer's disease (AD) pathogenesis over a decade ago following the identification of AD-associated genes that are expressed in a microglia-specific manner. However, while alterations in microglial morphology and gene expression are observed in human postmortem brain tissue, the mechanisms by which microglia drive and contribute to AD pathology remain ill-defined. Numerous mouse models have been developed to facilitate the disambiguation of the biological mechanisms underlying AD, incorporating amyloidosis, phosphorylated tau, or both.
View Article and Find Full Text PDFRep Pract Oncol Radiother
December 2024
Department of Biosciences Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, India.
Multi-omics approaches are revolutionizing cancer research and treatment by integrating single-modality omics methods, such as the transcriptome, genome, epigenome, epi-transcriptome, proteome, metabolome, and developing omics (single-cell omics). These technologies enable a deeper understanding of cancer and provide personalized treatment strategies. However, challenges such as standardization and appropriate methods for funneling complex information into clinical consequences remain.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: Muscle-invasive bladder cancer (MIBC) is a prevalent cancer characterized by molecular and clinical heterogeneity. Assessing the spatial heterogeneity of the MIBC microenvironment is crucial to understand its clinical significance.
Methods: In this study, we used imaging mass cytometry (IMC) to assess the spatial heterogeneity of MIBC microenvironment across 185 regions of interest in 40 tissue samples.
Front Immunol
January 2025
Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China.
Background: Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!