We analyze microscopic nonlinear optical response of periodic structures within the Floquet-Bloch formalism. The analysis is focused on the real-space distributions of optically induced charge and electron current density within the unit cell of a crystal. We demonstrate that the time-reversal symmetry of a crystal determines the phases of the temporal oscillations of these distributions. We further analyze their spatial symmetries and connection to macroscopic optical response. We illustrate our study with calculations that combine density functional theory with the Floquet-Bloch formalism. The calculations provide time-dependent optically induced charge distributions and electron current densities within the unit cells of a crystal with inversion symmetry and a crystal without inversion symmetry in response to a strong-field excitation. The real-space, microscopic view on nonlinear optical response provides insightful information about the strong field-matter interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894043PMC
http://dx.doi.org/10.1063/4.0000220DOI Listing

Publication Analysis

Top Keywords

optical response
16
nonlinear optical
12
floquet-bloch formalism
12
microscopic nonlinear
8
optically induced
8
induced charge
8
electron current
8
symmetry crystal
8
crystal inversion
8
inversion symmetry
8

Similar Publications

Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds.

J Nanobiotechnology

January 2025

Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.

Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.

View Article and Find Full Text PDF

Facial signals shape predictions about the nature of upcoming conversational responses.

Sci Rep

January 2025

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Wundtlaan 1, 6525 XD Nijmegen, Nijmegen, The Netherlands.

Increasing evidence suggests that interlocutors use visual communicative signals to form predictions about unfolding utterances, but there is little data on the predictive potential of facial signals in conversation. In an online experiment with virtual agents, we examine whether facial signals produced by an addressee may allow speakers to anticipate the response to a question before it is given. Participants (n = 80) viewed videos of short conversation fragments between two virtual humans.

View Article and Find Full Text PDF

Controllable synthesis of Pd and Pt shells on Au nanoparticles with electrodeposition.

Sci Rep

January 2025

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.

Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.

View Article and Find Full Text PDF

Sighting dominance is an important behavioral property which has been difficult to measure quantitatively with high precision. We developed a measurement method that is grounded in a two-camera model that satisfies these aims. Using a simple alignment task, this method quantifies sighting ocular dominance during binocular viewing, identifying each eye's relative contribution to binocular vision.

View Article and Find Full Text PDF

Purpose: Variations in neural survival along the cochlear implant electrode array leads to off-place listening, resulting in poorer speech understanding outcomes for recipients. Therefore, it is important to develop and compare clinically viable tests to identify these patient-specific intra-cochlear neural differences.

Methods: Nineteen experienced cochlear implant recipients (9 males and 10 females) were recruited for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!