A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to heterochromatin regulation. | LitMetric

Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres, and the silent mating type locus in . Using quantitative measures, iterative genetic screening, and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate domain-specific functions. For example, decreased mating type silencing was linked to mutations in heterochromatin maintenance genes, while compromised subtelomere silencing was associated with metabolic pathways. Furthermore, similar phenotypic profiles revealed shared functions for subunits within complexes. We also discovered that the uncharacterized protein Dhm2 plays a crucial role in maintaining constitutive and facultative heterochromatin, while its absence caused phenotypes akin to DNA replication-deficient mutants. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888830PMC
http://dx.doi.org/10.1101/2024.02.13.579970DOI Listing

Publication Analysis

Top Keywords

linked heterochromatin
12
heterochromatin
11
systematic approach
8
mating type
8
domain-specific heterochromatin
8
silencing
5
systematic quantitative
4
quantitative approach
4
approach comprehensively
4
comprehensively defines
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!