Genes within the secretory calcium-binding phosphoprotein (SCPP) family evolved in conjunction with major evolutionary milestones: the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals. The SCPP gene family also contains genes expressed primarily and abundantly in human saliva. Here, we explored the evolution of the saliva-related SCPP genes by harnessing currently available genomic and transcriptomic resources. Our findings provide insights into the expansion and diversification of SCPP genes, notably identifying previously undocumented convergent gene duplications. In primate genomes, we found additional duplication and diversification events that affected genes coding for proteins secreted in saliva. These saliva-related SCPP genes exhibit signatures of positive selection in the primate lineage while the other genes in the same locus remain conserved. We found that regulatory shifts and gene turnover events facilitated the accelerated gain of salivary expression. Collectively, our results position the SCPP gene family as a hotbed of evolutionary innovation, suggesting the potential role of dietary and pathogenic pressures in the adaptive diversification of the saliva composition in primates, including humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888740PMC
http://dx.doi.org/10.1101/2024.02.14.580359DOI Listing

Publication Analysis

Top Keywords

scpp genes
12
genes
8
genes secretory
8
secretory calcium-binding
8
calcium-binding phosphoprotein
8
phosphoprotein scpp
8
scpp gene
8
gene family
8
saliva-related scpp
8
scpp
7

Similar Publications

Genomic signatures associated with recurrent scale loss in cyprinid fish.

Integr Zool

May 2024

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Scale morphology represents a fundamental feature of fish and a key evolutionary trait underlying fish diversification. Despite frequent and recurrent scale loss throughout fish diversification, comprehensive genome-wide analyses of the genomic signatures associated with scale loss in divergent fish lineages remain scarce. In the current study, we investigated genome-wide signatures, specifically convergent protein-coding gene loss, amino acid substitutions, and cis-regulatory sequence changes, associated with recurrent scale loss in two divergent Cypriniformes lineages based on large-scale genomic, transcriptomic, and epigenetic data.

View Article and Find Full Text PDF

Carbon fiber-reinforced polyether ether ketone (CFRPEEK) implants have attracted widespread attention in the field of clinical bone defect repair. However, the surface bioinertness confines the application of CFRPEEK implants. Inspired by the study of rosmarinic acid (RA)-promoted osteogenic differentiation, a self-assembly surface modification method based on electrostatic interactions, involving deposition of sodium carboxymethyl cellulose/chitosan and rosmarinic acid layer by layer on the surface of poly-L-lysine modified hydroxy CFRPEEK (SCPP/CC@RA), is proposed to introduce RA on the surface of CFRPEEK for bioactivation.

View Article and Find Full Text PDF

Genes within the secretory calcium-binding phosphoprotein (SCPP) family evolved in conjunction with major evolutionary milestones: the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals. The SCPP gene family also contains genes expressed primarily and abundantly in human saliva. Here, we explored the evolution of the saliva-related SCPP genes by harnessing currently available genomic and transcriptomic resources.

View Article and Find Full Text PDF

Expression of secretory calcium-binding phosphoprotein (scpp) genes in medaka during the formation and replacement of pharyngeal teeth.

BMC Oral Health

October 2023

Department of Oral and Maxillofacial Anatomy, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504, Japan.

Background: Analyses of tooth families and tooth-forming units in medaka with regard to tooth replacement cycles and the localization of odontogenic stem cell niches in the pharyngeal dentition clearly indicate that continuous tooth replacement is maintained. The secretory calcium-binding phosphoprotein (scpp) gene cluster is involved in the formation of mineralized tissues, such as dental and bone tissues, and the genes encoding multiple SCPPs are conserved in fish, amphibians, reptiles, and mammals. In the present study, we examined the expression patterns of several scpp genes in the pharyngeal teeth of medaka to elucidate their roles during tooth formation and replacement.

View Article and Find Full Text PDF

Characiformes is a diverse and evolutionarily significant order of freshwater fish encompassing over 2,300 species. Despite its diversity, our understanding of Characiformes' evolutionary relationships and adaptive mechanisms is limited due to insufficient genome sequences. In this study, we sequenced and assembled the genomes of four Characiformes species, three of which were chromosome-level assemblies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!