Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Derivation of 3D coordination polymers to produce active catalysts has been a feasible strategy to achieve a precise coordination sphere for the catalytic site. This study demonstrates the partial conversion of a 3D cobalt dicyanamide coordination polymer, Co-dca, to a 2D layered hydroxide-oxyhydroxide structure under photocatalytic conditions. The catalyst exhibits an activity as high as 28.3 mmol h g in the presence of a [Ru(bpy)]/triethylamine (TEA) couple to maintain it for at least 12 h. Photocatalytic and characterization studies reveal that the dicyanamide ligand within the coordination polymer is crucial for governing modification and achieving a superior H evolution rate. Moreover, we observed the critical role of TEA as the hydrolyzing agent for the transformation process. This study displays that the metal dicyanamides can be utilized as templates for preparing active and robust catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883017 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!