Background And Purpose: High-density dental fillings pose a non-negligible impact on head and neck cancer treatment. For proton therapy, stopping power ratio (SPR) prediction will be significantly impaired by the associated image artifacts. Dose perturbation is also inevitable, compromising the treatment plan quality. While plenty of work has been done on metal or amalgam fillings, none has touched on composite resin (CR) and glass ionomer cement (GIC) which have seen an increasing usage. Hence, this work aims to provide a detailed characterisation of SPR and dose perturbation in proton therapy caused by CR and GIC.
Materials And Methods: Four types of fillings were used: CR, Fuji Bulk (FB), Fuji II (FII) and Fuji IX (FIX). The latter three belong to GIC category. Measured SPR were compared with SPR predicted using single-energy computed tomography (SECT) and dual-energy computed tomography (DECT). Dose perturbation of proton beams with lower- and higher-energy levels was also quantified using Gafchromic films.
Results: The measured SPR for CR, FB, FII and FIX were 1.68, 1.77, 1.77 and 1.76, respectively. Overall, DECT could predict SPR better than SECT. The lowest percentage error achieved by DECT was 19.7 %, demonstrating the challenge in estimating SPR, even for fillings with relatively lower densities. For both proton beam energies and all four fillings of about 4.5 mm thickness, the maximum dose perturbation was 3 %.
Conclusion: This study showed that dose perturbation by CR and GIC was comparatively small. We have measured and recommended the SPR values for overriding the fillings in TPS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891317 | PMC |
http://dx.doi.org/10.1016/j.phro.2024.100552 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!