Objective: The objective of this study was to explore the game relationship among enterprise, the government, and the public under the new media environment, so as to provide decision-making reference for improving enterprise green technology innovation and promoting economy high-quality development with new media participation.

Methods: This study constructs a three-subject evolutionary game model of enterprise, government, and public based on multi-agent relationship analysis and evolutionary game theory. In addition, the derivation of an evolutionary equilibrium strategy and numerical simulation analysis is carried out to comprehensively explore the evolution trajectory of green technology innovation system under the new media environment.

Findings: (1) The system may have four stable evolutionary strategies: (1,0,0), (0,0,1), (1,0,1), and (1,1,1). (2) The initial strategy probability of various actors would affect the system evolution speed but not the evolution result, and the authenticity of new media reports is an important factor determining the system evolution of green technology innovation. (3) Numerical simulation results show that a fair and just new media environment can effectively constrain the traditional production behavior of enterprise, actively guide the public to participate in supervision, and play an alternative role to government regulation to a certain extent.

Value: This study explores the evolutionary balance strategy of green technology innovation system under the new media environment, which not only enriches relevant theories of media environment governance but also has important reference value for promoting enterprises' green technology innovation and establishing an environmental governance system jointly governed by government, enterprise, public, and media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10886127PMC
http://dx.doi.org/10.3389/fpubh.2023.1253247DOI Listing

Publication Analysis

Top Keywords

green technology
24
technology innovation
24
media environment
16
media
9
game model
8
enterprise green
8
enterprise government
8
government public
8
public media
8
evolutionary game
8

Similar Publications

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Focused Ultrasound and Microbubble-Mediated Delivery of CRISPR-Cas9 Ribonucleoprotein to Human Induced Pluripotent Stem Cells.

Mol Ther

January 2025

Department of Biology, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada. Electronic address:

CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!