Early energy performance analysis of smart buildings by consolidated artificial neural network paradigms.

Heliyon

Chenyu Technology (Wuhan) Co., LTD, Wuhan, Hubei, 430074, China.

Published: February 2024

AI Article Synopsis

  • The study focuses on improving energy performance assessments in smart buildings by using optimized machine learning models to predict cooling and heating loads.
  • An artificial neural network (ANN) is utilized and optimized with five different algorithms, showing that models like the gazelle optimization algorithm (GOA), incomprehensible but intelligible-in-time logics (IbIL), and sooty tern optimization algorithm (STOA) yield the highest accuracy in predictions.
  • The results indicate that these optimized models significantly outperform other algorithms in predicting energy loads, making them ideal for early forecasts and enhancing energy system designs in residential buildings.

Article Abstract

The assessment of energy performance in smart buildings has emerged as a prominent area of research driven by the increasing energy consumption trends worldwide. Analyzing the attributes of buildings using optimized machine learning models has been a highly effective approach for estimating the cooling load (C) and heating load (H) of the buildings. In this study, an artificial neural network (ANN) is used as the basic predictor that undergoes optimization using five metaheuristic algorithms, namely coati optimization algorithm (COA), gazelle optimization algorithm (GOA), incomprehensible but intelligible-in-time logics (IbIL), osprey optimization algorithm (OOA), and sooty tern optimization algorithm (STOA) to predict the C and H of a residential building. The models are trained and tested via an Energy Efficiency dataset (downloaded from UCI Repository). A score-based ranking system is built upon three accuracy evaluators including mean absolute percentage error (MAPE), root mean square error (RMSE), and percentage-Pearson correlation coefficient (PPCC) to compare the prediction accuracy of the models. Referring to the results, all models demonstrated high accuracy (e.g., PPCCs >89%) for predicting both C and H. However, the calculated final scores of the models (43, 20, 39, 38, and 10 in H prediction and 36, 20, 42, 42, and 10 in C prediction for the STOA, OOA, IbIL, GOA, and COA, respectively) indicated that the GOA, IbIL, and STOA perform better than COA and OOA. Moreover, a comparison with various algorithms used in earlier literature showed that the GOA, IbIL, and STOA provide a more accurate solution. Therefore, the use of ANN optimized by these three algorithms is recommended for practical early forecast of energy performance in buildings and optimizing the design of energy systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884448PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25848DOI Listing

Publication Analysis

Top Keywords

optimization algorithm
16
energy performance
12
smart buildings
8
artificial neural
8
neural network
8
goa ibil
8
ibil stoa
8
buildings
5
energy
5
models
5

Similar Publications

The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.

View Article and Find Full Text PDF

This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.

View Article and Find Full Text PDF

This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!