The effective induction of high levels of stereocontrol for free radical-mediated transformations represents a notorious challenge in asymmetric catalysis. Herein, we describe a novel metalloredox biocatalysis strategy to repurpose natural cytochromes P450 to catalyse asymmetric radical cyclisation to arenes through an unnatural electron transfer mechanism. Empowered by directed evolution, engineered P450s allowed diverse radical cyclisation selectivities to be accomplished in a catalyst-controlled fashion: P450 and P450 facilitated enantioconvergent transformations of racemic substrates, giving rise to either enantiomer of the product with excellent total turnover numbers (up to 12,000). In addition to these enantioconvergent variants, another engineered radical cyclase, P450, permitted efficient kinetic resolution of racemic chloride substrates ( factor = 18). Furthermore, computational studies revealed a proton-coupled electron transfer (PCET) mechanism for the radical-polar crossover step, suggesting the potential role of the haem carboxylate as a base catalyst. Collectively, the excellent tunability of this metalloenzyme family provides an exciting platform for harnessing free radical intermediates for asymmetric catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882986 | PMC |
http://dx.doi.org/10.1038/s41929-023-00986-5 | DOI Listing |
Nat Chem
December 2024
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
Catalytic asymmetric dearomatization represents a powerful means to convert flat aromatic compounds into stereochemically well-defined three-dimensional molecular scaffolds. Using new-to-nature metalloredox biocatalysis, we describe an enzymatic strategy for catalytic asymmetric dearomatization via a challenging radical mechanism that has eluded small-molecule catalysts. Enabled by directed evolution, new-to-nature radical dearomatases P450-P450 facilitated asymmetric dearomatization of a broad spectrum of aromatic substrates, including indoles, pyrroles and phenols, allowing both enantioconvergent and enantiodivergent radical dearomatization reactions to be accomplished with excellent enzymatic control.
View Article and Find Full Text PDFNat Catal
July 2023
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
The effective induction of high levels of stereocontrol for free radical-mediated transformations represents a notorious challenge in asymmetric catalysis. Herein, we describe a novel metalloredox biocatalysis strategy to repurpose natural cytochromes P450 to catalyse asymmetric radical cyclisation to arenes through an unnatural electron transfer mechanism. Empowered by directed evolution, engineered P450s allowed diverse radical cyclisation selectivities to be accomplished in a catalyst-controlled fashion: P450 and P450 facilitated enantioconvergent transformations of racemic substrates, giving rise to either enantiomer of the product with excellent total turnover numbers (up to 12,000).
View Article and Find Full Text PDFJ Am Chem Soc
July 2022
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
New-to-nature radical biocatalysis has recently emerged as a powerful strategy to tame fleeting open-shell intermediates for stereoselective transformations. In 2021, we introduced a novel metalloredox biocatalysis strategy that leverages the innate redox properties of the heme cofactor of P450 enzymes, furnishing new-to-nature atom-transfer radical cyclases (ATRCases) with excellent activity and stereoselectivity. Herein, we report a combined computational and experimental study to shed light on the mechanism and origins of enantioselectivity for this system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!