Prostate-specific antigen (PSA) is a well-known clinical biomarker in prostate cancer (PCa) diagnosis, but a better test is still needed, as the serum-level-based PSA quantification exhibits limited specificity and comes with poor predictive value. Prior to PSA, prostatic acid phosphatase (PAP) was used, but it was replaced by PSA because PSA improved the early detection of PCa. Upon revisiting PAP and its glycosylation specifically, it appears to be a promising new biomarker candidate. Namely, previous studies have indicated that PAP glycoforms differ between PCa and non-PCa individuals. However, an in-depth characterization of PAP glycosylation is still lacking. In this study, we established an in-depth glycoproteomic assay for urinary PAP by characterizing both the micro- and macroheterogeneity of the PAP glycoprofile. For this purpose, PAP samples were analyzed by capillary electrophoresis coupled to mass spectrometry after affinity purification from urine and proteolytic digestion. The developed urinary PAP assay was applied on a pooled DRE (digital rectal examination) urine sample from nine individuals. Three glycosylation sites were characterized, namely N, N, and N, via -glycopeptide analysis. Taking sialic acid linkage isomers into account, a total of 63, 27, and 4 -glycan structures were identified, respectively. The presented PAP glycoproteomic assay will enable the determination of potential glycomic biomarkers for the early detection and prognosis of PCa in cohort studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885330 | PMC |
http://dx.doi.org/10.1021/acsmeasuresciau.3c00055 | DOI Listing |
Anal Chem
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
The role of peripheral blood platelets as indicators of cancer progression is increasingly recognized, and the significance of abnormal glycosylation in platelet function and related disorders is gaining attention. However, the potential of platelets as a source of protein site-specific glycosylation for cancer diagnosis remains underexplored. In this study, we proposed a general pipeline that integrates quantitative proteomics with site-specific glycoproteomics, allowing for an in-depth investigation of the platelet glycoproteome.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, and Minhang Hospital, Fudan University, Shanghai 200000, China.
Intact glycopeptide characterization by mass spectrometry has proven to be a versatile tool for site-specific glycoproteomics analysis and biomarker screening. Here, we present a method using a new model of a Q-TOF instrument equipped with a Zeno trap for intact glycopeptide identification and demonstrate its ability to analyze large-cohort glycoproteomes. From 124 clinical serum samples of breast cancer, noncancerous diseases, and nondisease controls, a total of 6901 unique site-specific glycans on 807 glycosites of proteins were detected.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea.
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:
N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.
View Article and Find Full Text PDFClin Proteomics
December 2024
Department of Pancreatic Surgery and Institutes for Systems Genetics, West China Hospital, Sichuan University, Keyuan 4th Road, Gaopeng Avenue, Hi-tech Zone, Chengdu, Sichuan, 610041, China.
Background: Pancreatic cancer is a highly aggressive tumor with a poor prognosis due to a low early detection rate and a lack of biomarkers. Most of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). Alterations in the N-glycosylation of plasma immunoglobulin G (IgG) have been shown to be closely associated with the onset and development of several cancers and could be used as biomarkers for diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!