Activation barriers of elementary reactions are essential to predict molecular reaction mechanisms and kinetics. However, computing these energy barriers by identifying transition states with electronic structure methods (, density functional theory) can be time-consuming and computationally expensive. In this work, we introduce , an equivariant graph neural network that predicts activation barriers using coefficients of any frontier molecular orbital (such as the highest occupied molecular orbital) of reactant and product complexes as graph node features. We show that using coefficients as features offer several advantages, such as chemical interpretability and physical constraints on the network's behaviour and numerical range. Model outputs are either activation barriers or coefficients of the chosen molecular orbital of the transition state; the latter quantity allows us to interpret the results of the neural network through chemical intuition. We test on a dataset of S2 reactions as a proof-of-concept and show that the activation barriers are predicted with a mean absolute error of less than 0.025 eV. The highest occupied molecular orbital of the transition state is visualized and the distribution of the orbital densities of the transition states is described for a few prototype S2 reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882514 | PMC |
http://dx.doi.org/10.1039/d3sc04411d | DOI Listing |
Dis Model Mech
January 2025
Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms.
View Article and Find Full Text PDFAnalyst
January 2025
Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
The seed coat plays a pivotal role in seed development and germination, acting as a protective barrier and mediating interac-tions with the external environment. Traditional histochemical techniques and analytical methods have provided valuable insights into seed coat composition and function. However, these methods often suffer from limitations such as indirect chemical signatures and lack of spatial resolution.
View Article and Find Full Text PDFStroke
January 2025
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.
Background: How cerebral microbleeds (CMBs) are formed, and how they cause tissue damage is not fully understood, but it has been suggested they are associated with inflammation, and they could also be related to increased blood-brain barrier (BBB) leakage. We investigated the relationship of CMBs with inflammation and BBB leakage in cerebral small vessel disease, and in particular, whether these 2 processes were increased in the vicinity of CMBs.
Methods: In 54 patients with sporadic cerebral small vessel disease presenting with lacunar stroke, we simultaneously assessed microglial activation using the positron emission tomography ligand [11C]PK11195 and BBB leakage using dynamic contrast enhanced magnetic resonance imaging, on a positron emission tomography-magnetic resonance imaging system.
Theranostics
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.
Intracerebral hemorrhage (ICH) is a devastating form of stroke with a lack of effective treatments. Following disease onset, ICH activates microglia and recruits peripheral leukocytes into the perihematomal region to amplify neural injury. Bruton's tyrosine kinase (BTK) controls the proliferation and survival of various myeloid cells and lymphocytes.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, Brazil.
The persistence or emergence of long-term symptoms following resolution of primary SARS-CoV-2 infection is referred to as long COVID or post-acute sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Among these, the central nervous system (CNS) is significantly impacted, leading to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral neuropathy (neuro-PASC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!